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PART A 

1. What is an algorithm? Or Define an algorithm. (Apr\May- 2017) Or  

Define algorithm  with its properties.(April/May 2021) 

➢ An  algorithm  is  a  finite  set  of  instructions  that,  if  followed,  accomplishes a 

particular task.  

➢ In addition, all algorithms must satisfy the following criteria: 

• input 

• Output 

• Definiteness 

• Finiteness 

• Effectiveness. 

 

2.  Define Program. 

A  program  is  the  expression  of  an  algorithm  in  a  programming  language.  

 

3.  What is performance measurement? 

Performance measurement is concerned with obtaining the space and the time 

requirements of a particular algorithm. 

 

4.  Write the For LOOP general format. 

           The general form of a for Loop is 

For variable : = value 1 to value 2  

Step do 

{ 

<statement 1> 

<statement n > 

} 

5.  What is recursive algorithm? 

✓ Recursive algorithm makes more than a single call to itself is known as recursive call.  

✓ An algorithm that calls itself is Direct recursive.  

✓ Algorithm A is said to be indeed recursive if it calls another algorithm,which in turn calls 

A 

 

6.  What is space complexity? 

The space complexity of an algorithm is the amount of memory it needs to run to  

completion. 

 

7.  What is time complexity? 

The time complexity of an algorithm is the amount of time it needs to run to 

 completion. 

 

8.  Give the two major phases of performance evaluation. 

 Performance evaluation can be loosely divided into two major phases: 

➢ a prior estimates (performance analysis) 

➢ a posterior testing (performance measurement) 

9.  Define input size. 

The  input  size  of  any  instance  of  a  problem  is  defined  to  be the  number  of elements 

needed to describe that instance. 

 

10. Define best-case step count. 

The best-case step count is the minimum number of steps that can be  

executed for the given parameters. 
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11. Define worst-case step count. 

The worst-case step count is the maximum number of steps that can   be executed for 

the given parameters. 

 

12. Define average step count. 

The average step count is the average number of steps executed an instances with the 

given parameters. 

 

13. Define the asymptotic notation “Big oh” (0) 

A function t(n) is said to be in O(g(n)) (t(n) Є O(g(n))), if t(n) is bounded above by constant 

multiple of g(n) for all values of n, and if there exist a positive constant c and non negative 

integer n0 such that  

t(n) ≤ c*g(n)                        for all n ≥ n0. 

 
 

14. Define the asymptotic notation “Omega” ( Ω ). NOV/DEC 2021 

 

A function t(n) is said to be in Ω(g(n)) (t(n) Є Ω(g(n))), if t(n) is bounded below by constant 

multiple of g(n) for all values of n, and if there exist a positive constant c and non negative 

integer n0 such that   t(n) ≥ c*g(n)                  for all n ≥ n0. 

                     
15. Define the asymptotic notation “theta” (Θ) 

A function t(n) is said to be in Θ(g(n)) (t(n) Є Θ(g(n))), if t(n) is bounded both above and 

below by constant multiple of g(n) for all values of n, and if there exist a positive constant c1 

and c2  and non negative integer n0 such that C2*g(n) ≤ t(n) ≤ c1*g(n)            for all n ≥ n0. 
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16. What is a Computer Algorithm? 

An algorithm is a sequence of unambiguous instructions for solving a problem, i.e., for 

obtaining a required output for any legitimate input in a finite amount of time. 

 

17. What are the features of an algorithm? 

More precisely, an algorithm is a method or process to solve a problem satisfying the 

following properties: 

Finiteness-Terminates after a finite number of steps 

Definiteness-Each step must be rigorously and unambiguously specified. 

Input-Valid inputs must be clearly specified. 

Output-Can be proved to produce the correct output given a valid input. 

Effectiveness-Steps must be sufficiently simple and basic. 

 

18. Show the notion of an algorithm.           Dec 2009 / May 2013 

An algorithm is a sequence of unambiguous instructions for solving a problem in a finite 

amount of  time. 

            
 

19. What are different problem types?  

o Sorting  

o Searching 

o String Processing 

o Graph problems 

o Combinatorial Problems 

o Geometric problems 

o Numerical problems 

 

20. What are different algorithm design techniques/strategies? 

o Brute force 

o Divide and conquer 

o Decrease and conquer 

o Transform and conquer 



 

CS 8451 DESIGN AND ANALYSIS OF ALGORITHMS                                    UNIT 1 

 

 

  

5 

o Space and time tradeoffs 

o Greedy approach 

o Dynamic programming 

o Backtracking 

o Branch and bound 

 

21. How to measure an  algorithm’s running time? Nov/Dec 2017 

Unit for measuring the running time is the algorithms basic operation. The running time is 

measured by the count of no. of times the basic operations is executed. 

Basic operation: the operation that contributes the most to the total running time. 

Example: the basic operation is usually the most time-consuming operation in the 

algorithm’s innermost loop. 

 

22. How time efficiency is analyzed? 

Let  cop – execution time of algorithms basic operation on a particular computer. 

       c(n) – no. of times this operation need to be executed. 

       T(n) – running time. 

Running time is calculated using the formula 

    T(n) ≈ cop c(n) 

 

23. What are orders of growth? 

Orders of Growth 

 
 

24. What are basic efficiency classes? 

Basic Efficiency classes 

 

 

 

 

 

 

 

 

 

 

 

 

25. Give an example for basic operations. 

Input size and basic operation examples 

Problem Input size measure Basic operation 

Searching for key in a list 

of n items 

Number of list’s items, 

i.e. n 

Key comparison
 

 

Multiplication of two 

matrices 

Matrix dimensions or total 

number of elements 

Multiplication of two 

numbers 

1 Constant 

log n Logarithmic 

n Linear 

n log n Linearithmic 

n2 

 
Quadratic 

n3 Cubic 

2n Exponential 

n! Factorial 
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Checking primality of a 

given integer n 

size = number of digits 

(in binary representation) 
Division

 

Typical graph problem 
Number of vertices and/or 

edges 

Visiting a vertex or 

traversing an edge 

 

26. What are six steps processes in algorithmic problem solving? Dec 2009 

1. Understanding the problem. 

2. Ascertaining the capabilities of a computational device. 

3. Choosing between exact and approximate problem solving. 

4. Deciding on appropriate data structures. 

5. Algorithm Design Techniques. 

6. Methods of specifying an algorithm 

7. Proving an algorithm's correctness. 

8. Analysing an algorithm. 

9. Coding an algorithm. 

 

27. What do you mean by Amortized Analysis?   

✓ Amortized analysis finds the average running time per operation over a worst case 

sequence of operations.  

✓ Amortized analysis differs from average-case performance in that probability is not 

involved; amortized analysis guarantees the time per operation over worst-case 

performance.    

 

28. Define order of an algorithm. 

Measuring the performance of an algorithm in relation with the input size n is known as order 

of growth. 

 

29. How is the efficiency of the algorithm defined? Or . How do you measure the efficiency of 

an algorithm?   May/June 2019 

The efficiency of an algorithm is defined with the components. 

(i) Time efficiency -indicates how fast the algorithm runs   

(ii) Space efficiency -indicates how much extra memory the algorithm 

         needs  

 

30. What are the characteristics of an algorithm?   

Every algorithm should have the following five characteristics   

(i) Input 

(ii) Output 

(iii) Definiteness 

(iv) Effectiveness 

(v) Termination    

 

31. What are the different criteria used to improve the effectiveness of  algorithm?   

(i) The effectiveness of algorithm is improved, when the design, satisfies  the  

     following constraints to be minimum.   

 Time efficiency - how fast an algorithm in question runs.   

          Space efficiency – an extra space the algorithm requires. 

(ii) The algorithm has to provide result for all valid inputs.      

32. Analyse the time complexity of the following segment:   

 for(i=0;i<N;i++)   

 for(j=N/2;j>0;j--)   

 sum++; 

 Time Complexity= N * N/2 = N2 /2  Є O(N2)   
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33. Write general plan for analysing non-recursive algorithms.   

i. Decide on parameter indicating an input’s size.  

ii. Identify the algorithm’s basic operation  

iii. Check the no. of times basic operation executed depends on size of input. if it   depends 

on some additional property, then best, worst, average cases need  to be investigated   

iv. Set up sum expressing the no. of times the basic operation is executed. (establishing order 

of growth)   

34. How will you measure input size of algorithms?   

The time taken by an algorithm grows with the size of the input. So the running time of the 

program depends on the size of its input. The input size is measured as the number of items 

in the input that is a parameter n is indicating the algorithm’s input size.    

35. Write general plan for analysing recursive algorithms.    

i. Decide on parameter indicating an input’s size.  

ii. Identify the algorithm’s basic operation  

iii. Checking the no. of times basic operation executed depends on size of  

    input. if it depends on some additional property, then best, worst,   average    

    cases need to be investigated   

iv. Set up the recurrence relation, with an appropriate initial condition, for  the  

    number of times the basic operation is executed  

v. Solve recurrence  (establishing order of growth)    

36. What do you mean by Combinatorial Problem?   

Combinatorial Problems are problems that ask to find a combinatorial object-such as 

permutation, a combination, or a subset-that satisfies certain constraints and has some 

desired properties. 

37. Define Little “oh”.  

 The function f(n) = 0(g(n)) if and only if 

    Lim     f(n) / g(n)  = 0  

   n →∞    

38. Define Little Omega.  

 The function f(n) = ω (g(n)) )) if and only if 

    Lim     f(n) / g(n)  = 0  

   n →∞    

39. Write algorithm using iterative function to fine sum of n numbers.  

 Algorithm  

  sum(a, n) 

  {  

       S := 0.0  

       For i=1 to n  

                               do  

                                    S : - S + a[i];  

                                    Return S;  

                       }   

40. Write an algorithm using Recursive function to fine sum of n numbers.   

 Algorithm  

  Rsum (a, n) 

  {  

   If(n≤0) then  

    Return 0.0; 

   Else  

    Return Rsum(a, n- 1) + a(n);  

  } 

41. Describe the recurrence relation for merge sort?  
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If the time for the merging operation is proportional to n, then the computing time of merge 

sort is described by the recurrence relation 

 
 

42. What is time and space complexity?       Dec 2012   Part A – Refer Q. No. 6 & 7 

 

43. Define Algorithm validation.              Dec 2012 

The process of measuring the effectiveness of an algorithm before it is coded to know 

whether the algorithm is correct for every possible input. This process is called validation. 

 

44. Differentiate time complexity from space complexity.    May 2010 

Part A – Refer Q. No. 6 & 7 

 

45. What is a recurrence equation?                    May 2010 

A recurrence [relation] is an equation or inequality that describes a function in terms of its 

values on smaller inputs. 

Examples:  

  Factorial: multiply n by (n –1)! 

       T(n) = T(n – 1) + O(1)     -> O(n) 

  Fibonacci: add fibonacci(n – 1) and fibonacci(n – 2) 

       T(n) = T(n – 1) + T(n – 2)  -> O(2n) 

 

46. What do you mean by algorithm?    May 2013  Part A – Refer Q. No. 1, 16 & 18 

47. Define Big Oh Notation.                      May 2013   Part A – Refer Q. No. 13 

 

48. What is average case analysis?    May 2014 

The average case analysis of an algorithm is analysing the algorithm for the average input of 

size n, for which the algorithm runs at an average between the longest and the fastest time.

    

49. Define program proving and program verification.   May 2014 

✓ Given a program and a formal specification, use formal proof techniques (e.g. 

induction)  to prove that the program behaviour fits the specification. 

✓ Testing to determine whether a program works as specified. 

 

50. Define asymptotic notation.     May 2014 

Asymptotic notations are mathematical tools to represent time complexity  of algorithms for 

measuring their efficiency. 

 Types : 

▪ Big Oh notation - 'O'  

▪ Omega notation - 'Ω' 

▪ Theta notation - ’Θ’ 

▪ Little Oh notation - 'o ' 

▪ Little Omega notation - 'Ω' 

 

51. What do you mean by recursive algorithm?           May 2014  Part A – Refer Q. No. 5 

52. Establish the relation between O and Ω     Dec 2010 

  f(n) ∈ Ω(g(n)) ⟺ g(n) ∈ O(f(n)) 

 Proof: 

  O(f(n))={g:N→N  |  ∃c,n0∈N  ∀n≥n0:g(n)≤c⋅f(n)} 

  Ω(g(n))={f:N→N  |  ∃c,n0∈N  ∀n≥n0:f(n)≥c⋅g(n)} 

  Step 1/2: f(n) ∈ Ω(g(n)) ⟺ g(n) ∈ O(f(n)) 
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  ∃c,n0∈N ∀n≥n0: f(n)≥c⋅g(n)⇒f(n)g(n)≥c⇒1g(n)≥cf(n)⇒g(n)≤1c⋅f(n) 

   And this is exactly the definition of O(f(n)). 

  Step 2/2: f(n)∈Ω(g(n))⇐g(n)∈O(f(n)) 

  ∃c,n0∈N ∀n≥n0: g(n)≤c⋅f(n)⇒...⇒f(n)≥1c⋅g(n) 

  Hence proved. 

 

53. If f(n) = amnm + ... + a1n + a0. Prove that f(n)=O(nm).     Dec 2010 Refer Class note. 

 

54. What is best case analysis? Or Best case efficiency. 

The best case analysis of an algorithm is  analysing the algorithm for the best case input of 

size n, for which the algorithm runs the fastest among all the possible inputs of that size.  

 

55. what do you mean worst case efficiency of algorithm.Nov/Dec 2017 

The worst case analysis of an algorithm is analysing the algorithm for the worst case input of 

size n, for which the algorithm runs the longest among all the possible inputs of that size. 

  

56.Consider an algorithm that finds the number of binary digits in the binary  

     representation ofa positive decimal integer. (AU april/may 2015) 

Number of major comparisons=⌊log2n⌋+ 1∈log2n. 

Algorithm 3: Finding the number of binary digits in the binary representation of a positive 

decimal integer. 

Algorithm Binary(n) 

count:=1; 

whilen >1 

do 

count:=count+ 1; 

n:=⌊n/2⌋; 
end 

return count; 

57.write doun the properties of asymptotic notations.(AU april/may 2015) 

The following property is useful in analyzing algorithms that comprise two consecutively 

executed parts. 

Theorem 

 If t1(n)    O(g1(n)) and t2(n) Є O(g2(n)) then, 

  t1(n) + t2(n)  Є (max {g1(n),g2(n)}) 

Proof 

 Since   t1(n) Є O(g1(n)), there exist some constant C1 and some non  

negative integer n1 such that  

  t1(n) ≤ C1 (g1(n)) for all n ≥ n1 

Since 

  t2(n)      O(g2(n)) 

  t2(n) ≤ C2 (g2(n)) for all n ≥ n2 

Let us denote, 

  C3=max {C1, C2} and  

Consider n ≥ max {n1, n2}, so that both the inequalities can be used. 

The addition of two inequalities becomes, 

  t1(n)+ t2(n)  ≤ C1 (g1(n))+ C2 (g2(n)) 

           ≤ C3 (g1(n))+ C3 (g2(n)) 

                     ≤ C3 2 max{g1(n), (g2(n))} 

Hence, 

t1(n) +t2(n) Є  O (max {g1(n),g2(n)}),  

with the constants C and n0 required by the definition being 2C3 = 2 max (C1, C2) and 

max {n1, n2} respectively. 
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The property implies that the algorithms overall efficiency will be determined by the 

part with a larger order of growth. 

(i.e.) its least efficient part is 

t1(n) Є O(g1(n))   t1(n) +t2(n) Є O (max {g1(n),g2(n)}) 

t2(n) Є O(g2(n)) 

 

58. Give the Euclid’s algorithm for computing gcd(m, n) (AU nov 2016) or  write an algorithm to 

compute the greatest common divisor of two numbers (Apr/ May-2017)(or)  

Give the Euclid’s algorithm for computing gcd of two numbers. (May/June 2018) 

 

ALGORITHM Euclid_gcd(m, n) 

//Computes gcd(m, n) by Euclid’s algorithm 

//Input: Two nonnegative, not-both-zero integers m and n 

//Output: Greatest common divisor of m and n 

while n ≠ 0 do 

r ←m mod n 

m←n 

n←r 

return m 

 

Example: gcd(60, 24) = gcd(24, 12) = gcd(12, 0) = 12. 

59.Compare the order of growth n(n-1)/2 and n
2
. (AU nov 2016) 

n(n-1)/2 is lesser than the half of n
2
 

 

60.The (log n)th smallest number of n unsorted numbers can be determined in O(n) average- 

     case time    

      Ans: True   

61.Fibonacci algorithm and its recurrence relation 

Algorithm for computing Fibonacci numbers 

First method 

 Algorithm F(n) 

 //Computes the nth Fibonacci number recursively by using its definition. 

 //Input: A nonnegative integer n 

 //Output: The nth Fibonacci number 

 if n<1 

  return n 

 Else 

  return F(n-1)+(n-2) 

n n(n-1)/2 n
2 

Polynomial Quadratic Quadratic 

1 0 1 

2 1 4 

4 6 16 

8 28 64 

10 45 10
2 

2 
10 4950 10

4 

Complexity Low High 

Growth Low high 
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the algorithm’s basic operation is addition. 

Let A(n) is the number of additions performed by the algorithm to compute F(n). 

The number of additions needed to compute F(n-1) is A(n-1) and the number of additions 

needed to compute F(n-2) is A(n-2). 

 

62. Design an algorithm to compute the area and circumference of a circle 

 
 

63. What is a basic operation? 

A basic operation could be: An assignment. A comparison between two variables. An 

arithmetic operation between two variables. The worst-case input is that input assignment for 

which the most basic operations are performed. 

Basic Operations on Sets. The set is the basic structure underlying all of mathematics. In algorithm 

design, sets are used as the basis of many important abstract data types, and many techniques have 

been developed for implementing set-based abstract data types. 

 

64. Define algorithm. List the desirable properties of an algorithm. 

Algorithm is a step-by-step procedure, which defines a set of instructions to be executed in a 

certain order to get the desired output. Algorithms are generally created independent of underlying 

languages, i.e. an algorithm can be implemented in more than one programming language. 

An algorithm must satisfy the following properties: Input: The algorithm must have input 

valuesfrom a specified set. ... The output values are the solution to a problem. Finiteness: For any 

input, the algorithm must terminate after a finite number of steps. Definiteness: All steps of 

the algorithm must be precisely defined. 

65. Define best, worst, average case time complexity.  
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• The worst-case complexity of the algorithm is the function defined by the maximum number of steps 

taken on any instance of size n. It represents the curve passing through the highest point of each 

column.   

• The best-case complexity of the algorithm is the function defined by the minimum number of steps 

taken on any instance of size n. It represents the curve passing through the lowest point of each 

column.   

• Finally, the average-case complexity of the algorithm is the function defined by the average number 

of steps taken on any instance of size n.  

66.Prove that the of f(n)=o(g(n)) and g(n)=o(f(n)),then f(n)=θ g(n).  OR  

state the transpose symmetry property of O and Ω                                   April/May 2019,Nov/Dec 
2019 

Given function:  

f(n) and g(n) 

f(n)= O(g(n)) when f(n) ≤C1g(n)  for all n≥n0---------(1) 

f(n)= Ω(g(n)) when f(n) ≥C2g(n)  for all n≥n0---------(2) 

from (1) and (2) 

C2 g(n) ≤f(n) ≤ C1g(n)  for all  n≥n0 -------(3) 

(i.e) Θ(g(n)) = O(g(n))Ω(g(n)) 

From (3) f(n) = Θ(g(n)) hence proved 

67. Define recursion 

A function may be recursively defined in terms of itself. A familiar example is the Fibonacci 

number sequence: F(n) = F(n − 1) + F(n − 2). 

For such a definition to be useful, it must be reducible to non-recursively defined values: in 

this case F(0) = 0 and F(1) = 1. ccurs when a thing is defined in terms of itself or of its type. 

Recursion is used in a variety of disciplines ranging from linguistics to logic.  

The most common application of recursion is in mathematics and computer science, where 

a function being defined is applied within its own definition.  

While this apparently defines an infinite number of instances (function values), it is often 

done in such a way that no loop or infinite chain of references can occur. 

 

68. List the reasons for choosing an approximate algorithm. 

Approximation algorithms are typically used when finding an optimal solution is 
intractable, but can also be used in some situations where a near-optimal solution can be 

found quickly and an exact solution is not needed. Many problems that are NP-hard are also 
non-approximable assuming P≠NP.

https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Fibonacci_number
https://en.wikipedia.org/wiki/Fibonacci_number
https://en.wikipedia.org/wiki/Linguistics
https://en.wikipedia.org/wiki/Logic
https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Function_(mathematics)
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PART – B 

1. Explain the notion of an algorithm with diagram.      May2014 

    Synopsis: 

➢ Introduction 

➢ Definition 

➢ Diagram 

➢ Characteristics of an Algorithm / Features of an Algorithm 

➢ Rules for writing an Algorithm 

➢ Implementation of an Algorithm 

➢ Order of an Algorithm 

➢ Program 

➢ Example : GCD 

Introduction: 

▪ An algorithm is a sequence of finite number of steps involved to solve a particular 

problem. 

▪  An input to an algorithm specifies an instance of the problem the algorithm solves. 

▪  An algorithm can be specified in a natural language or in a pseudo code. 

▪  Algorithm can be implemented as computer programs. 

▪  The same algorithm can be represented in several different ways.  

▪  Several algorithms for solving the same problem may exist. 

▪  Algorithms for the same problem can be based on different ideas and can solve the 

problem with dramatically different speeds. 

 Definition: 

▪ An algorithm is a sequence of non ambiguous instructions for solving a  problem in a 

finite amount of time. 

▪ Each algorithm is a module, designed to handle specific problem.  

▪ The non ambiguity requirement for each step of' an algorithm cannot be  

compromised. 

▪ The range of inputs for which an algorithm works has to be specified  carefully. 

Diagram: 

 
 Characteristics of an algorithm / Features of an Algorithm 

The important and prime characteristics of an algorithm are, 

✓ Input:Zero or more quantities are externally supplied. 

✓ Output:At least one quantity is produced. 

✓ Definiteness:Each instruction is clear and unambiguous. 

✓ Finiteness:For all cases the algorithm terminates after a finite number of steps. 

✓ Efficiency:Every instruction must be very basic. 

✓ An algorithm must be expressed in a fashion that is completely free of  

ambiguity. 

✓ It should be efficient. 

✓ Algorithms should be concise and compact to facilitate verification of their 

correctness. 

Writing an algorithm 

• Algorithm is basically a sequence of instructions written in simple English language. 
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• The algorithm is broadly divided into two sections 

 

 

 

 

 

 

 

 

 

 

   

 Rules for writing an algorithm. 

Algorithm is a product consisting of heading and body. The heading consists of keyword 

algorithm and name of the algorithm and parameter list. The syntax  is 

Algorithm name ( p1, p2,.......pn ) 

1. Then in the heading section we should write following things : 

// Problem Description; 

// Input: 

//Output: 

2. Then body of an algorithm is written, in which various programming constructs like if 

, for , while or some assignment statement may be written. 

3. The compound statements should be enclosed within  { and } brackets. 

4. Single line comments are written  using // as beginning of comment. 

5. The identifier should begin by latter and not by digit. An identifier can be a 

combination  of alphanumeric string. 

• It is not necessary to write data types explicitly for identifiers. It will be 

represented by the context itself.  

• Basic data types used are integer, float, and char, Boolean and so on. 

• The pointer type is also used to point memory locations.  

• The compound data type such as structure or record can also be used. 

6. Using assignment operator ← an assignment statement can be given. 

For instance: Variable ← expression 

7. There are other types of operators’ such as Boolean operators such as true or false. 

Logical operators such as AND, OR, NOT. And relational operators such as < , <= , 

>, >=, = , !=. 

8. The array indices are stored with in square brackets ‘[‘ ‘]’. The index of array usually 

starts at zero. The multidimensional arrays can also be used in algorithm. 

9. The inputting and outputting can be done using read and write. 

For example: 

Write (“this message will be displayed on console “); 

Read (Val); 

10.  The conditional statements such as if –then – else are written in following  form  

If (condition) then statement 

If (condition) then statement else statement 

If the if – then statement is of compound type then {and} should be used for 

enclosing block 

11. While statement can be written as : 

While (condition)do 

{ 

 Statement 1 

 Statement 2 

      : 

Algorithm heading  

It consists of name of algorithm, problem  description , input 

and output. 

Algorithm Body 

It consists of logical body of the algorithm by making use of 

various programming constructs and assignment statement. 
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 Statement n 

} 

While the condition is true the block enclosed with {  } gets executed otherwise 

statement after} will be executed. 

12. The general form for writing for loop is : 

For variable ← value1 to valuen  do 

{ 

 Statement 1 

 Statement 2 

      : 

 Statement n 

} 

Here value1 is initialization condition and  valuen  is a terminating condition the step 

indicates the increments or  decrements in  value1  for executing the for loop. 

Sometime a keyword step is used to denote increment or decrement the value of 

variable for example 

 For i ← 1 to n step 1  

{ 

 Write (i) 

} 

 

13. The repeat – until statement can be written as  

Repeat  

 Statement 1 

 Statement 2 

      : 

 Statement n 

Until (condition) 

14. The break statement is used to exit from inner loop. The return statement is used to 

return control from one point to another. Generally used while exiting from function  

Note:  The statements in an algorithm executes in sequential order i.e. in the same 

order as they appear – one after the other 

 

Example 1 : Write an algorithm to count the sum of n numbers 

 

Algorithm   sum (1, n) 

//Problem description : this algorithm is for finding the 

//sum of given n numbers 

//Input: 1 to n numbers 

//Output: the sum of n numbers 

      Result ← 0 

       For i 1 to n do  

   i  ← i+1 

      Result ← result + i 

 Return result 

 

Example 2: Write an algorithm to check whether given number is even or odd. 

 

Algorithm eventest ( val) 

//Problem description : this algorithm test whether given 

//number is even or odd 

//Input: the number to be tested i.e .val 

//Output: appropriate messages indicating even or odd 

Here variable i is incremented  

by 1 at each iteration 
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If (val % 2 = 0) then  

    Write (“given number is even “) 

Else 

    Write (“given number is odd”) 

 

Example 3: Write an algorithm for sorting the elements. 

 

Algorithm sort (a, n) 

//Problem description: sorting the elements in ascending   

//order 

//Input: an array in which the elements in ascending order 

//is total number of elements in the array 

//Output: the sorted array 

For i 1 to n do 

For j i + 1 to  n-1 do 

If (a[i]>a[j]) then 

{ 

      temp ← a[i] 

      a[i] ←a[j] 

      a[j] ←temp 

} 

Write ( “ list is sorted “) 

 

Example 4: Write an algorithm to find factorial of n number. 

 

Algorithm fact (n) 

//Problem description: this algorithm finds the factorial. 

//for given number n 

//Input : the number n of which the factorial is to be  

//calculated. 

//Output : factorial value of given n number. 

If( n ← 1) then 

    Return 1 

Else 

    Return n * fact(n-1) 

Example 5:  

Write an algorithm to perform multiplication of two matrices 

 

Algorithm mul (A, b, n) 

//Problem description: this algorithm is for computing 

//multiplication of two matrices 

//Input : the two matrices A, B and order of them as n 

//Output : The multiplication result will be in matrix c 

For i ← 1 to n do 

        For j ← 1 to n do 

C [i,j] ← 0 

 

For k ← 1 to n do 

     C[I ,j ] ←c[i, j] +A[i,k]B[k,j] 

 

Implementation of algorithms 

An algorithm describes what the program is going to perform. It states some of the actions to be 

executed and the order in which these actions are to be executed. 
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The various steps in developing algorithm are, 

1.  Finding a method for solving a problem. Every step of an algorithm should be in a 

precise and in a clear manner. Pseudo code is also used to describe the algorithm. 

2. The next step is to validate the algorithm. This step includes, all the algorithm should 

be done manually by giving the required input, performs the required steps including 

in the algorithm and should get the required amount of output in an finite amount of 

time. 

3. Finally, implement the algorithm in terms of programming language. 

 

Order of an algorithm 

The order of an algorithm is a standard notation of an algorithm that has been 

developed to represent function that bound the computing time for algorithms. It is an 

order notation. It is usually referred as O-notation. 

 

Example 

Problem size = 'n' 

Algorithm = 'a' for problem size n 

The document mechanism execution = Cn2 times 

 where C – constant 

 Then the order of the algorithm 'a' = O(n2) 

 where n2 = Complexity of the algorithm 'a'. 

Program 

• A set of explicit and unambiguous instructions expressed using a programming 

languages constructs is called a program. 

• An algorithm can be converted into a program, using any programming language. 

Pascal, Fortran, COBOL, C and C++ are some of the programminglanguages. 

 

 

Difference between program and algorithm: 

 

1.A. write an algorithm using recursion that determines the GCD of two numbers.Determine 

the time and space complexity Nov/Dec 2019 

Example : Calculating Greatest common Divisor 

The Greatest common Divisor (GCD) of two non zero numbers a and b is basically 

the largest integer that divides both a and b evenly i.e with a remainder of zero. 

GCD using three methods 

1. Euclid's algorithm 

2. Consecutive integer checking algorithm 

3. Finding Gusing repetitive factors 

 

Euclid's algorithm to compute Greatest Common Divisor (GCD) of two non negative 

integers. 

Euclid's algorithm is based on applying related equality  

     gcd (m, n) = gcd (n, m mod n) until the m and n is equal to 0 

 Where m mod n is the remainder of the division of m by n 

Step 1: Start 

Step 2: If n = 0, return the value of m as the answer and stop,  

           otherwise proceed to step 3. 

Sno Algorithm Program 

1 Algorithm is finite. Program need to be finite. 

2 Algorithm is written using natural 

language or algorithmic language. 

Programs are written using a specific 

programming language. 
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Step 3: Divide m by n and assign the value of the remainder to r. 

Step 4: Assign the value of n to m and the value of r to n. Goto step  2 

Step 5: Stop 

 
Example, gcd (60,24) can be computed as follows, 

gcd (60,24)   gcd (m, n) 

m =60, n=24; 

m/n = 2 (remainder 12) 

n=m=24 

r=n=12 

gcd (24, 12)   m/2 = 2 (remainder 0) 

n=m=12 

r=n=0 

gcd (12, 0) =12 

Hence, gcd(60, 24) = gcd(24,l2)=gcd(12,0)=12 

 

2.  Consecutive integer checking algorithm  

In this method while finding the GCD of  a and b we first of all find the minimum value of 

them. Suppose if , value of  b is minimum then we start checking the divisibility by each 

integer which is lesser than or equal to b. 

Example: 

   a = 15 and b =10 then 

t= min( 15,10) 

since 10 is minimum we will set value of t = 10 initially.  

Consecutive integer checking algorithm for computing gcd(m, n) 

Step 1: Start 

Step 2: Assign the value of mini {m, n} to t 

Step 3: Divide m by t. If the remainder of this division is 0, go to step 4,  

           Otherwise goto step 5. 

Step 4: Divide n by t. If the remainder of this division is 0, return the value  

           of t as the answer and stop. Otherwise proceed to step 5. 

Step 5: Decrease the value of t by I. Go to step 3. 

Step 6: Stop 

Algorithm GCD intcheck (a,b) 

//Problem description : this algorithm computes the GCD of //two 

numbers a and b using consecutive integer checking   

//method 

//Input : two integers a  and b  

//Output: GCD value of a and b 

 t ← min ( a, b) 

while (t>=1) do 

{ 

If ( a mod t == 0 AND b mod t == 0) then 

Return t 
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Else 

   t ← t-1 

} 

Return 1 

 

 

 

 

 

 

 

3. Finding GCD using repetitive factors 

The third procedure for finding the greatest common divisor is middle school procedure. 

 

Middle School Method 

For the numbers 60 and 24 

 

 

 

 

 

 

 

 

 

 

                               60=2x2x3  x5                  

                               24=2x2x3  x2 

                gcd (60,24) =2x2x3      =12 

 

Algorithm: 

Step 1: Start 

Step 2: Find the prime Factor of m. 

Step 3: Find the prime factors of n. 

Step 4: Identify all the common factors in the two prime  expressions Found in 

           step 2 and step 3. If' P is a common  factor occurring pm and pn times in    

           m and n respectively. It should be  repeated min (pm, and pn) times. 

Step 5: Compute the product of the all the common factors and  return it as the  

    greatest common divisor of the numbers given. 

Step 6: Stop. 

 

2. Explain the Fundamentals of Algorithmic problem solving. Or explain the steps involved in 

problem solving    May 2014 ,April/May 2019 

Sequential steps in designing and analysing an algorithm 

1. Understanding the problem. 

2. Ascertaining the capabilities of a computational device. 

3. Choosing between exact and approximate problem solving. 

4. Deciding on appropriate data structures. 

5. Algorithm Design Techniques. 

6. Methods of specifying an algorithm 

7. Proving an algorithm's correctness. 

8. Analysing an algorithm. 

9.Codinganalgorithm. 

 

       2 60 

          

           2  30 

            

            3  15 

                 5 

 

 

       2 24 

          

           2  12 

            

            2    6 

                  3      
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1.Understanding the problem: 

✓ To design an algorithm, understand the problem completely by reading the   problem's 

description carefully. 

✓ Read the problem description carefully and clear the doubts. 

✓ Specify exactly the range of inputs the algorithm need to handle. 

✓ Once the problem is clearly understandable, then determine the overall goals but it should be 

in a precise manner. 

✓ Then divide the problem into smaller problems until they become manageable size. 

2. Ascertaining the capabilities of a computational device 

Sequential Algorithm: 

✓ Instructions are executed one after another, one operation at a time. 

✓ This is implemented in RAM model. 

Parallel Algorithm:  

✓ Instructions are executed in parallel or concurrently. 

3. Choosing between exact and appropriate problem solving 

✓ The next principal decision is to choose between solving the problem exactly or 

solving the problem approximately. 

✓ The algorithm used to solve the problem exactly called exact algorithm. 

✓ The algorithm used to solve the problem approximately is called approximation 

algorithm. 

Reason to choose approximate algorithm 

o There are important problems that simply cannot be solved exactly  

such as 

▪ Extracting square roots. 

▪ Solving non linear equations. 

▪ Evaluating definite integrals. 

✓ Available algorithms for solving problem exactly can be unacceptably slow, because 
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of the problem’s intrinsic complexity. Ex: Travelling salesman problem 

4. Deciding on appropriate data structures 

Data structure is important for both design and analysis of algorithms. 

Algorithm + Data Structures = Programs. 

In Object Oriented Programming, the data structure is important for both design and analysis 

of algorithms. 

The variability in algorithm is due to the data structure in which the data of the program are 

stored such as  

1. How the data are arranged in relation to each other.  

2. Which data are kept in memory  

3. Which data are kept in files and how the files are arranged. 

4. Which data are calculated when needed? 

5. Algorithm Design Techniques 

An algorithm design techniques or strategy or paradigm is general approach to solving 

problems algorithmically that is applicable to a variety of problems from different areas of 

computing. 

Uses 

✓ They provide guidance for designing algorithms or new problems. 

✓ They provide guidance to problem which has no known satisfied algorithms. 

✓ Algorithm design technique is used to classify the algorithms based on the design 

idea. 

✓ Algorithm design techniques can serve as a natural way to categorize and study the 

algorithms. 

6. Methods of specifying an algorithm 

There are two options, which are widely used to specify the algorithms. 

They are 

o Pseudo code 

o Flowchart 

Pseudo code 

o A pseudo code is a mixture of natural language and programming language 

constructs. 

o A pseudo code is more precise than a natural language 

o For simplicity, declaration of the variables is omitted. 

o For, if and while statements are used to show the scope of the variables. 

o "←" (Arrow) - used for the assignment operation. 

o "//" (two slashes) - used for comments. 

Flow chart 

o It is a method of expressing an algorithm by a collection of connected geometric 

shapes containing description of the algorithms steps. 

o It is very simple algorithm. 

o This representation technique is inconvenient. 

 

7.  Proving an Algorithm's correctness 

Once an algorithm has been specified, then its correctness must be proved. 

✓ An algorithm must yield a required result for every legitimate input in a finite amount 

of time. 

✓ A mathematical induction is a common technique used to prove the correctness of the 

algorithm. 

✓ In mathematical induction, an algorithm's iterations provide a natural sequence of 

steps needed for proofs. 

✓ If the algorithm is found incorrect, need to redesign it or reconsider other decisions. 

8. Analysing an algorithm 

✓ Efficiency of an algorithm is determined by measuring the time, space and amount of 
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resources, it uses for executing the program. 

✓ The efficiency of the algorithm is determined with respect to central processing units 

time and internal memory. 

✓ There are two types of algorithm efficiency.  

They are 

o Time efficiency (or) Time Complexity 

o Space efficiency (or) Space Complexity 

Time Efficiency / Time Complexity 

✓ Time efficiency indicates how fast the algorithm runs. 

✓ The time taken by a program to complete its task depends on the number of steps in 

an algorithm. 

✓ The time required by a program to complete its task will not always be the same. 

✓ It depends on the type of problem to be solved. 

It can be of two types. 

o Compilation Time  

o Run Time (or) Execution Time 

✓ The time (T) taken by an algorithm is the sum of the compile time and execution 

time. 

Compilation Time 

✓ The amount of time taken by the compiler to compile an algorithm is known as 

compilation time. 

✓ During compilation time, it does not calculate the executable statements, it calculates 

only the declaration statements and check for any syntax and  semantic errors. 

✓ The different compilers can take different times to compile the same program. 

Execution Time 

✓ The execution time depends on the size of the algorithm. 

✓ If the number of instructions in an algorithm is large then the run time is also large. 

✓ If the number of instructions in an algorithm is small then the time need to execute 

the program is small. 

✓ The execution time is calculated for executable statements and not for the declaration 

statements.  

✓ The complexity is normally expressed as an order of magnitude. 

✓ Example: O (n^ 2)  

✓ The time complexity of a given algorithm is defined as computation of function f() as 

a total number of statements that are executed for computing the value f(n). 

✓ The time complexity is a function which depends on the value of n. 

The time complexity can be classified as 3 types.  

They are 

1. Worst Case analysis 

2. Average Case analysis  

3. Best Case analysis 

Worst Case Analysis 

✓ The worst case complexity for a given size corresponds to the maximum complexity 

encountered among all problem of the same size. 

✓ Worst case complexity takes a longer time to produce a desired result. 

This can be represented by a function f(n). 

f(n) =n^2 or n log n 

Average Case Analysis 

✓ The average case analysis is also known as the expected complexity which gives 

measure of the behaviour of an algorithm averaged over all possible problem of the 

same size. 

✓ Average case is the average time taken by an algorithm for producing a desired 

output. 
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Best Case Analysis 

✓ Best case is a shortest time taken by an algorithm to produce the desired result. 

Space Complexity 

✓ Space efficiency indicates how much extra memory the algorithm needs. 

✓ The amount of storage space taken by the algorithm depends on the type of the 

problem to be solved. 

✓ The space can be calculated as, 

✓ A fixed amount of memory occupied by the space for the program code is space 

occupied by the variable used in the program. 

✓ A variable amount of memory occupied by the component variable dependent on the 

problem is being solved. 

✓ This space is more or less depending upon whether the program uses iterative or 

recursive procedures. 

There are three different space considered for determining the amount of memory used by the 

algorithm. 

They are 

o Instruction Space 

o Data Space 

o Environment Space 

Instruction Space 

✓ When the program gets compiled, then the space needed to store the compiled 

instruction in the memory is called instruction space. 

✓ The instruction space independent of the size of the problem 

Data Space 

✓ The memory space used to hold the variables of data elements are called data space. 

✓ The data space is related to the size of the Problem 

Environment Space 

✓ It is the space in memory used only on the execution time for each Function call. 

✓ It maintains runtime stack in that it holds returning address of the previous functions. 

✓ Every function on the stack has return value and a pointer on it. 

Characteristics of an algorithms 

o Simplicity 

o Generality 

Simplicity 

o Simpler algorithms are easier to understand. 

o Simpler algorithms are easier to program. 

o The resulting programs contains only few bugs. 

o Simpler algorithms are more efficient compared to the complicated 

alternatives. 

Generality 

o The characteristic of an algorithm generality has two issues. 

o They are  

▪ Generality' of the problem the algorithm solves. 

▪ Range of inputs it accepts.  

9. Coding an Algorithm 

✓ Implementing an algorithm correctly is necessary but not sufficient to diminish the 

algorithm's power by an inefficient implementation. 

✓ The standard tricks such as computing a loop's invariant (an expression that does not change 

its value) outside the loop, collecting common sub expressions, replacing expensive 

operations by cheaper ones and so on should be known to the programmers such factors can 

speed up a program only by a constant factor, where as a better algorithm can make a 

difference in running time by orders of magnitude. 
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✓ Once an algorithm has been selected, a 10-50% speed up may be worth an effort. 

✓ An algorithm's optimality is not about the efficiency of an algorithm but about the 

complexity of the problem it solves. 

3. Explain the important problem types. 

     Some of the most important problem types are 

1. Sorting 

2. Searching 

3. String Matching (or) String processing 

4. Graph Problems 

5. Combinatorial problems 

6. Geometric problems 

7. Numerical Problems 

1. Sorting 

✓ Sorting means arranging the elements in increasing order or in decreasing order. 

✓ The sorting can be done on numbers , characters (alphabets), string or employees 

record.  

✓ Many algorithms are used to perform the task of sorting. 

✓ Sorting is the operation of arranging the records of a table according to the key value 

of the each record. 

✓ A table of a file is an ordered sequence of records r[l], r[2].. r[n] each containing a 

key k[l], k[2]....k[n]. The table is sorted based on the key. 

Properties of Sorting Algorithms 

The two properties of Sorting Algorithms are 

1. Stable 

     2. In-place 

Stable: 

✓ A sorting algorithm is called stable, if it preserves the relative order of any two equal 

elements in its input. 

✓ In other words, if an input list contain two equal elements in positions i and j, where i<j, then 

in the sorted list they have to be in position i' and j' respectively, such that i' < j' 

In-place 

✓ An algorithm is said to be in-place if it does not require extra  memory, except, possibly for a 

few memory units. 

The important criteria for the selection of a sorting method for the given set of data items are as 

follows. 

1. Programming time of the sorting algorithm. 

2. Execution time of the program  

3. Memory space needed for the programming environment  

The main objectives involved in the design of sorting algorithms are 

1. Minimum number of exchanges. 

2. Large volume of data blocks movement. 

Types of Sorting 

The two major classification of sorting methods are 

1. Internal Sorting methods  

2. External Sorting methods 

Internal Sorting 

✓ The key principle of internal sorting is that all the data items to be sorted are retained in the 

main memory and random access memory. 

✓ This memory space can be effectively used to sort the data items. 

✓ The various internal sorting methods are 

1. Bubble sort 

2. Selection sort 

3. Shell sort  
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4. Insertion sort 

5. Quick sort 

6. Heap sort 

External Sorting 

✓ The idea behind the external sorting is to move data from secondary storage to mail 

memory in large blocks for ordering the data. 

✓ The most commonly used external sorting method is merge sort. 

2. Searching   

✓ One of the important applications of array is searching 

✓ Searching is an activity by which we can find out the desired element from the list. The 

element which is to be searched is called search key 

✓ There are many searching algorithm such as sequential search , Fibonacci search and more. 

Searching in dynamic set of elements 

✓ There may be of elements in which repeated addition or deletion of elements occur.  

✓ In such a situation searching an element is difficult.  

✓ To handle such lists supporting data structures and algorithms are needed to make the 

list balanced (organized) 

3. String processing 

A string is a collection of characters from an alphabet. 

Different type of strings are 

o Text string  

o Bit string  

Text String  It is a collection of letters, numbers and special characters. 

Bit String    It is collection of zeros and ones. 

• Operations performed on a string are 

1. Reading and writing strings  

2. String concatenation   

3. Finding string length  

4. String copy 

5. String comparison 

6. Substring operations 

7. Insertions into a string 

8. Deletions from a string  

9. Pattern matching 

Pattern Matching or String matching  

The process of searching for an occurrence of word in a text is called Pattern matching. 

Some of the algorithms used for pattern matching are 

1. Simple pattern matching algorithm 

2. Pattern matching using Morris Pratt algorithm 

3. Pattern matching using Knuth-Morris-Pratt algorithm 

4. Graph Problems 

✓ Graph is a collection of vertices and edges.  

✓ Formally, a graph G={ V, E } is defined by a pair of two sets. 

✓ A finite set V of items called Vertices and a set E of pairs of these items called edges. 

✓ If the pairs of vertices are ordered, then G is called a directed graph because every edge is 

directed. 

✓ In a directed graph the direction between two nodes are not same       G(V,W)!=G(W,V) 

✓ If the pair of the vertices are unordered then G is called an undirected graph. 

✓ In undirected graph, the edges has no specific direction. 

✓ The graph problems involve graph traversal algorithms, shortest path algorithm and 

topological sorting and so on. Some graph problems are very hard to solve.  

✓ For example travelling salesman problem, graph colouring problems 

5. Combinatorial Problems 
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✓ The travelling salesman problem and the graph colouring problems are examples of 

combinatorial problems. 

✓ A combinatorial object such as a permutation a combination or a subset that satisfies 

certain constraints and has some desired property such as maximizes a value or 

minimizes a cost should be find. 

✓ Combinatorial problems are the most difficult problems.  

The reason is, 

1. As problem size grows the combinatorial objects grow rapidly and reach  to huge   

value. size. 

2. There is no algorithms available which can solve these problems in finite   

    amount of time 

3. Many of these problems fall in the category of unsolvable problem. 

Some combinatorial problems can be solved by efficient algorithms. 

6. Geometric Problems 

✓ Geometric algorithms deal with geometric objects such as points ,lines and polygons. 

✓ The procedure for solving a variety of geometric problems includes the problems of 

constructing simple geometric shapes such as triangles, circles and so on. 

The two classic problems of computational geometry are the  

1. Closest pair problem  

2. Convex hull problem 

✓ The closest pair problem is self explanatory. Given n points in the plane, find the closest pair 

among them. 

✓ The convex hull problem is used to find the smallest convex polygon that would include all the 

points of a given set. 

✓ The geometric problems are solved mainly in applications to computer graphics or in robotics 

6.Numerical problems 

✓ Numerical problems are problems that involve mathematical objects of continuous nature 

such as solving equations and systems of equations computing definite integrals evaluating 

functions and so on. 

✓ Most of the mathematical problems can be solved approximate algorithms. 

✓ These algorithms require manipulating of the real numbers; hence we may get wrong output 

many times.  

 

3.Explain the fundamentals of the analysis framework. Or  explain time-space trade off of 

the algorithm designed. April/May 2019 

 

• Efficiency of an algorithm can be in terms of time or space.  

• This systematic approach is modelled by a frame work called as analysis frame work. 

Analysis framework  

o The efficiency of an algorithm can be decided by measuring the performance of 

an algorithm.  

o The performance of an algorithm is computed by two factors 

▪ amount of time required by an algorithm to execute 

▪ amount of storage required by an algorithm 

Overview 

• Space complexity 

• Time complexity 

• Measuring an Input's size 

• Measuring Running Time 

• Orders of Growth 

Space complexity  

• The space complexity can be defined as amount of memory required by an 

algorithm to run. 
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• To compute the space complexity we use two factors: constant and instance 

characteristics. 

• The space requirement S(p) can be given as S(p) = C+ S(p) 

Where C is a constant i.e. fixed part and it denotes the space of inputs and 

outputs. 

Time complexity    

• The time complexity of an algorithm is the amount of computer time required by 

an algorithm to run to completion. 

• For instance in multiuser system, executing time depends on many factors such as 

o System load 

o Number of other programs running  

o Instruction set used 

o Speed underlying hardware 

• The time complexity is therefore given in term of frequency count 

o Frequency count is a count denoting number of times of execution of statement 

Example 

For (i=0; i<n; i++) 

{ 

   sum = sum + a[i]; 

} 

 

Statement Frequency count 

i=0 1 

i<n 

 

 

 

This statement executes for (n+1) times. When 

conditions is true i.e. when i<n is true , the execution 

happens to be n times , and the statement execute once 

more when i<n is false 

i++ n times 

sum = sum + a[i] n times 

Total 3n + 2 

Measuring an Input's size 

• All algorithms run longer on larger inputs. 

• Ex: Sorting larger arrays, multiply larger matrices etc. 

• Investigates an algorithm efficiency as a function of some parameter n indicating the 

algorithm input size. 

• Example: 

o In problem of evaluating a polynomial p(x) = an x n + ….+ a0 of degree n, the 

parameter will be the polynomial's degree or the number of its coefficients 

which is larger by one than its degree. 

• In spell checking algorithm,  

o If algorithm examines the individual character of its input, then the size of the 

input is the no. of characters. 

o If the algorithm processes the word, the size of the input is the no. of words. 

Measuring Running Time 

• Some units of time measurement such as a second, a millisecond and so on can be 

used to measure the running time of a program implementing the algorithm. 

• Drawbacks 

 l. Dependence on the speed of a particular computer 

2. Dependence on the quality of a program implementing the algorithm. 

3. The compiler used in generating the machine code. 
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4. The difficulty of clocking the actual running time of the program  

• Since we are in need to measure an algorithm's efficiency, we should have a metric 

that does not depend on these factors. 

• One possible approach is to count the number of times of the algorithm's operations is 

executed. But this approach is difficult and unnecessary. 

• The main objective is to identify the most important operation of the algorithm, called 

the Basic Operation - the operation contributing the most to the total running time, 

and compute the number of times the basic operation is executed. 

• It is not so difficult to identify the basic operation of an algorithm: it is usually the 

most time consuming operation in the algorithm's innermost loop. 

Example  

• Most sorting algorithms work by comparing the elements (keys) of a list being 

sorted with each other. For such algorithms the basic operation is a Key 

Comparison. 

 

 

 

 

 

 

   

 

 

 

 

The formula to compute the execution time using basic operation is  

.  T(n) ≈ Cop C(n) 

 Where T(n) – running time 

  C(n) – no. of times this operation is executed. 

  Cop – execution time of algorithms basic operation. 

Orders of Growth  

• Measuring the performance of an algorithm in relation with the input size n is called 

order of growth.  

Worst Case, Best Case and Average Case efficiencies   

• It is reasonable to measure an algorithm's efficiency as a function of a    parameter 

indicating the size of the algorithm's input. 

• But for many algorithms the running time depends not only on an input size but also 

on the specifics of a particular input. 

 

Example: Sequential Search or Linear Search AU: Dec -11,  Marks 10 

 

ALGORITHM SequentialSearch(A[0..n − 1], K) 

//Searches for a given value in a given array by sequential search 

//Input: An array A[0..n − 1] and a search key K 

//Output: The index of the first element in A that matches K 

// or −1 if there are no matching elements 

i ←0 

while i < n and A[i] _= K do 

i ←i + 1 

if i < n return i 

                      else return -1 

• This algorithm searches for a given item using some search key K in a list of 'n' 

elements by checking successive elements of the list until a match with the search key 

Problem statement Input Size Basic operation 

Searching a key 

element from the 

list of n elements 

List of n elements Comparison of key with every 

element of list 

 

Performing matrix 

multiplication 

The two matrixes with 

order n×n 

Actual multiplication of the 

elements in the matrices 

Computing GCD of 

two numbers 

Two numbers Division 
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is found or the list is exhausted. 

• The algorithm makes the largest number of key comparisons among all possible 

inputs of size n:Cworst(n)=n 

Worst case efficiency  

• The worst case efficiency of an algorithm is its efficiency for the worst case input of 

size n, which is an input (or inputs) of size n. For which the algorithm runs the 

longest among all possible of that size. 

• The way to determine the worst case efficiency of an algorithm is that: 

o Analyse the algorithm to see what Kind of inputs yield the largest value of the 

basic operations count C(n) among all possible inputs of size n and then 

compute is w value  Cworst  = (n). 

Best case efficiency 

• The best case efficiency of an algorithm is its efficiency for the best case input of size 

n, which is an input (or inputs) of. size n for which the algorithm runs the fastest 

among all possible inputs of that size. 

• The way to determine the best case efficiency of an algorithm is as follows. 

o First, determine the kind of inputs of size n.  

o Then ascertain the value of C(n) on these inputs. 

• Example: For sequential search, the best case inputs will be lists of size 'n' with  their 

first elements equal to a search key: Cbest(n) = 1. 

Average case efficiency 

• It yields the necessary information about an algorithm's behaviour on a "typical" or 

"random" input.  

• To determine the algorithm's average case efficiency some assumptions about   

possible inputs of size 'n'.  

• The average number of key comparisons Cavg (n) can be computed as follows: 

o In  case of a successful search the probability of the first match occurring in 

the position of the list is p/n for every i. and the number of comparisons made 

by the algorithm in such a situation is obviously ‘i’. 

o In case of an unsuccessful search, the number of comparisons is 'n'  with the 

probability of such a search being (1-p). Therefore, 

 

Cavg(n)=[1. +2. +......i. +...n. +]+n.(1-p) 

  = [1+2+3+....+i+...+n]+n(1-p) 

 

  = +n(1-p) 

 

 Cavg(n)= + n(1-p) 

 

Example:  

o If p = 1 (i.e.) if the search is successful, then the average number of  key 

comparisons made by sequential search is (n+1)/2. 

o If p = 0 (i.e.) if the search is unsuccessful, then the average number of key 

comparisons will be 'n' because the algorithm will inspect all n elements on all 

such inputs. 

 

4. Explain the Asymptotic Notations and its properties? Or explain briefly Big oh notation 

, Omega notation and Theta notation give an example (Apr/May-2017) or what are the 

Rules of Manipulate Big-Oh Expression and about the typical growth rates of 

There may be n elements at 

which chances of ‘not getting 

element’ are possible. Hence n . 

(1-p) 
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algorithms? Nov/Dec 2017 Nov/Dec 2018 

Define Big O notation, Big Omega and Big Theta Notation. Depict the same graphically 

and explain. May/June 2018 , Nov/Dec 2019 

Explain the importance of asymptotic analysis for running time of an algorithm with an 

example. (April/May 2021) 

Asymptotic notations are mathematical tools to represent time complexity  of algorithms for 

measuring their efficiency. Types : 

o Big Oh notation - 'O'  

o Omega notation - 'Ω' 

o Theta notation - ’Θ’ 

o Little Oh notation - 'o ' 

Big Oh notation (O) 

o The big oh notation is denoted by ‘O’.  

o It is a method of representing the upper bound of algorithm’s running time.  

o Using big oh notation we can give longest amount of time taken by the 

algorithm to complete. 

Definition 

A function t(n) is said to be in O(g(n)) (t(n) Є O(g(n))), if t(n) is bounded above by constant 

multiple of g(n) for all values of n, and if there exist a positive constant c and non negative 

integer n0 such that  

o t(n) ≤ c*g(n)                        for all n ≥ n0. 

o  
Example 1: 

Consider function t(n) = 2n + 2 and g(n) = n2. Then we have to find some 

constant c, so that f(n) ≤ c*g(n).  

As t(n) = 2n + 2 and g(n) = n2. Then we find c for n=1 then  

  t(n)  =  2n + 2 

          = 2(1) +2 

   t(n)  = 4 

And g(n) = n2 

                   =  (1) 2 

   g(n)  =  1 

i.e t(n)  > g(n) 

 

if n = 2 then, 

t(n)  =  2n + 2 

                   = 2(2) +2 

t(n)  = 6 

And g(n)  = n2 

                    =   (2) 2 

   g(n)  =  4 

i.e t(n)  > g(n) 

 

if n = 3 then, 

t(n)  =  2n + 2 
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       = 2(3) +2 

t(n)  = 8 

And g(n)  = n2 

          =   (3) 2 

   g(n)  =  9 

i.e t(n)  <  g(n) is true. 

Hence we can conclude that for n> 2, we obtain  

t(n)  < g(n) 

Thus always upper bound of existing time is obtained by big oh notation. 

 

Omega Notation (Ω) 

Omega notation is denoted by ‘Ω’.  

This notation is used is to represent the lower bound of algorithm’s running time.  

Using omega notation  we can denote shortest amount of time taken by algorithm. 

 

Definition   

A function t(n) is said to be in Ω(g(n)) (t(n) Є Ω(g(n))), if t(n) is bounded below by constant 

multiple of g(n) for all values of n, and if there exist a positive constant c and non negative 

integer n0 such that  

o t(n) ≥ c*g(n)                        for all n ≥ n0. 

▪  
o Example 1: 

Consider  t(n)=2n2  + 5 and g(n) = 7n 

Then   if n = 0 

          t(n)  =  2 (0)2 + 5 

      = 5 

          g(n)  = 7(0) 

         = 0   i.e t(n) > g(n) 

But        if  n = 1 

       t(n)  =  2 (1)2 + 5 

        = 7 

         g(n) = 7(1) 

                  = 7    i.e  t(n) = g(n) 

But        if  n = 2 

       t(n)  =  2 (2)2 + 5 

        = 9 

       g(n) = 7(2) 

        = 12    i.e  t(n) < g(n) 

          But        if  n = 3 

       t(n)  =  2 (3)2 + 5 

            = 18 + 5 

                                   = 23 

                  g(n) = 7(3) 

              = 21    i.e  t(n) > g(n) 

Thus for n>3 we get t(n) > c * g(n). 

It can be represented as  
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2n2 + 5 ∈Ω(n) 

Theta Notation (Θ) 

The theta notation is denoted by  Θ. By this method the running time is between upper 

bound and lower bound. 

 

Definition 

A function t(n) is said to be in Θ(g(n)) (t(n) Є Θ(g(n))), if t(n) is bounded both above and 

below by constant multiple of g(n) for all values of n, and if there exist a positive constant c1 

and c2  and non negative integer n0 such that  

o C2*g(n) ≤ t(n) ≤ c1*g(n)                 for all n ≥  

n0. 

•   
 

Example 1: 

If  t(n) = 2n + 8 and g(n) = 7n, 5n 

Where n ≥ 2 

C2*g(n) ≤ t(n) ≤ c1*g(n)                 for all n ≥ 

Θ(g(n)) = O(g(n) ) Ω(g(n)) 

(t(n) Є Θ(g(n))) 

Similarly t(n) = 2n + 8 

   g(n) = 7n 

  g(n) = 5n 

i.e    5n < 2n + 8 < 7n  for n ≥ 2 

       Here c2 = 5  and c1 = 7 with n0 = 2 

Little oh notation(o) 

The function t(n) = o(g(n)), if O(g(n)) and t(n) <> (g(n)) 

Example 

  t(n) = 3n+2 

  Where n>0, 3n+2 ≤ 5 n2 

  By definition of Big Oh 

   t(n) = Cg(n) 

   C = 5; g(n) = n2 

  But t(n) = 3n+2 < > (n2) 

  Therefore t(n) = 3n+2 = o(n2) 

 

Useful property involving the Asymptotic notation: 

 The following property is useful in analyzing algorithms that comprise two 

consecutively executed parts. 

Theorem 

 If t1(n) Є  O(g1(n)) and t2(n) Є   O(g2(n)) then, 

  t1(n) + t2(n) Є  (max {g1(n),g2(n)}) 

Proof 

 Since   t1(n) Є  O(g1(n)), there exist some constant C1 and some non  

negative integer n1 such that  

  t1(n) ≤ C1 (g1(n)) for all n ≥ n1 

Since 
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  t2(n)  Є    O(g2(n)) 

  t2(n) ≤ C2 (g2(n)) for all n ≥ n2 

Let us denote, 

  C3=max {C1, C2} and  

Consider n ≥ max {n1, n2}, so that both the inequalities can be used. 

The addition of two inequalities becomes, 

   

t1(n)+ t2(n)  ≤ C1 (g1(n))+ C2 (g2(n)) 

           ≤ C3 (g1(n))+ C3 (g2(n)) 

                     ≤ C3 2 max{g1(n), (g2(n))} 

Hence, 

t1(n) +t2(n) Є  O (max {g1(n),g2(n)}),  

with the constants C and n0 required by the definition being 2C3 = 2 max (C1, C2) and 

max {n1, n2} respectively. 

The property implies that the algorithms overall efficiency will be determined by the 

part with a larger order of growth. 

(i.e.) its least efficient part is 

t1(n) Є O(g1(n)) t1(n) +t2(n) Є O (max {g1(n),g2(n)})  

t2(n) Є O(g2(n)) 

 

Using limits for comparing orders of growth 

 

There are 3 principal cases,  

 

L' Hospital's rule. 

 

 

 

Stirling’s formula 

                 n!≈  n for large values of n. 

 

Asymptotic Growth Rate 

Three notations used to compare orders of growth of an algorithm’s basic 

operation count 

➢ O(g(n)): class of functions f(n) that grow  no faster than g(n) 

➢ Ω(g(n)): class of functions f(n) that grow  at least as fast as g(n) 

➢ Θ (g(n)): class of functions f(n) that grow at same rate as g(n) 

                   

0, Implies that (n) has a smaller order                                                      

of growth than g(n) 

C, Implies that (n) has a same order                                                      

of growth than g(n) 

∞,  Implies that (n) has a larger order                                                      

of growth than g(n) 

 =  
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Basic Asymptotic Efficiency Classes 

Class Name Comments 

1 Constant Short of best-case efficiencies 

logn Logarithmic Cutting a problem size by a constant factor 

n Linear 
Algorithms that scan a list of size n.(eg sequential 

search) 

n logn n-log-n Many divide and conquer algorithm 

n2 Quadratic 
Efficiency of algorithm with two embedded 

loops. 

n3 Cubic 
Efficiency of algorithm with three embedded 

loops. 

2n Exponential Generate all the subsets of an n element set. 
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n! Factorial 
Algorithm that generate all permutations of an n 

element set 

 

 

5. Explain the Mathematical analysis for non-recursive algorithm or write an 

algorithm for determining the uniqueness of an array. Determine the time complexity of your 

algorithm. (Apr/May-2017) April/May 2019 

 

General plan for analyzing efficiency of non-recursive algorithm 

1. Decide the input size based on parameter n. 

2. Identify the algorithm basic operation(s).  

3. Check whether the number of times the basic operation is  executed depends on only on  

     the size of the input. 

4. Set up a sum expressing the number of times the algorithm basic  operation is excited 

5. Simplify the sum using standard formula  and rules 

 

Example 1: Problem for finding the value of the largest element in a list of   

                   n numbers 
The pseudo code to solving the problem is 

 

ALGORITHM MaxElement(A[0..n-1]) 

//Problem Description : This algorithm is for finding the  

//maximum value element from the array 

//Input:An array A[0..n-1] of real numbers 

//Output: Returns the largest element from array 

Maxval ← A[0] 

For i ← 1 to n-1 do 

{ 

If ( A[i]>max_value)then 

Maxval ← A[i] 

            } 

Return Max_value 

 

Mathematical Analysis 

Step 1: The input size is the number of elements in the array(ie.),n 

Step 2 : The basic operation is comparison in loop for finding larger value There are two  

             operations in the for loop 

✓ Comparison operation a[i]->maxval 

✓ Assignment operation maxval->a[i] 

Step 3: The comparison is executed on each repetition of the loop. As the  

   comparison is made for each value of n there is no need to find best case   

   worst case and average case analysis.  

Step 4:  Let C(n) be the number of times the comparison is executed.  

  The algorithm makes comparison each time the loop executes. 

  That means with each new value of I the comparison is made.  

 Hence  for i= 1 to n – 1 times the comparison is made . therefore we can    

   formulate C(n) as 

                         C(n) = one comparison made for each value of i 

Step 5 : let us simplify the sum 

Thus C(n) =  

            =n-1 θ (n)  

 

Searching the maximum element from an array 

If any value is large than current 

Max_ Value then set new Max_value 

by obtained larger value 
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Using the rule    θ (n) 

The frequently used two basic rules of sum manipulation are, 

   i=C i R1 

i+bi)= I  + i     R2 

           The two summation formulas are 

1. =u-l+1 

 

Where l≤ u are some lower and upper integer limits S1 

 

2. = =1+2+…..+n 

                             =n(n+1)/2 

                             =1/2n2 o(n2) S2 

Example 2:   Element uniqueness problem-check whether all the element in  

                     the list are distinct                               April/May 2019 
 

ALGORITHM UniqueElements(A[0..n-1]) 

//Checks whether all the elements in a given array are distinct 

//Input :An array A[0..n-1] 

//Output Returns ‘true’ if all elements in A are distinct and ‘false’ 

//otherwise 

for i  to n-2 do 

for j i+1 to n-1 do 

if a[i] = a[j] then 

 return false   

else 

                   return true 

Mathematical analysis  

Step 1: Input size is  n  i.e total  number of elements in the array A 

Step 2: The basic iteration will be comparison of two elements . this    

            operation   the innermost operation in the loop . Hence 

if a[i] = a[j] then comparison will be the basic operation . 

Step 3 : The number of comparisons made will depend upon the input n . 

               but  the algorithm will have worst case complexity if the same  

               element is  located at the end of the list. Hence the basic operation  

              depends  upon the input n and worst case 

 

Worst case investigation 

Step 4: The worst case input is an array for which the number od elements comparison 

cworst(n) is the largest among the size of the array. 

There are two kinds of worst case inputs, They are 

1.Arrays with no equal elements. 

2.Arrays in which the last two elements are pair of equal elements. 

For the above inputs, one comparison is made for each repetition of the inter most loop 

(ie) for each value of the loop's variable 'j' between its limits i+1 and n-1 and this is 

repeated limit for each values of the outer loop (ie) for each value of the loop's variable `i' 

between  0 and n-2. Accordingly, 

C worst (n) = Outer loop × Inner loop 

 

Cworst(n) =  

Step 5: now we will simplify C worst as follows 

               =        Θ  

If any two elements in the array 

are similar then return .false 

indicating that the array elements 

are not distinct 
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               =  

               = -  

Now taking (n-1) as a common factor, we can write 

                
 

               = (n-1)  

                 
Solving this equation we will get   

              = 2( n-1) (n-1) – (n-2) (n-1)/2 

               = ( 2(n 2 – 2n + 1) – (n 2- 3n + 2)) /2 

              = (( n2 – n) / 2 

               =1/2 n2 

                        Θ (n2) 

We can say that in the worst case the algorithm needs to compare all   

 n (n – 1 )/2 distinct of its n elements. 

Therefore C worst(n)= 1/2n2 € o(n2) 

 

EXAMPLE 3  : Obtaining matrix multiplication 
Given two n × n matrices A and B, find the time efficiency of the definition-based 

algorithm for computing their  product C = AB, where A and B are n by n (n*n) 

matrices. 

By definition, C is an n × n matrix whose elements are computed as the scalar (dot) products 

of the rows of matrix A and the columns of matrix B: 

 
 

where C[i, j ]= A[i, 0]B[0, j]+ . . . + A[i, k]B[k, j]+ . . . + A[i, n − 1]B[n − 1, j] for 

every pair of indices 0 ≤ i, j ≤ n − 1. 

 

        b00 
b

01 

 C =    a00
   a01  a03     1 2  

 1 2 3 

          ×    b10 
b

11 

  a10  a11  a12      3 4 

 4 5 6 

    2 × 3    b20 
b

21 

        5 6  3   × 2 

 

The formula for multiplication of the above  two matrices is 

 

 a00 ×b00 + a01 ×b10 + a02 ×b20   a00  ×b01 + a01×b11 + a02×b21 

 

This can be obtained using 

formula /2 

This can be obtained using formula  
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C = 

a10×b00 + a11×b10 + a12×b20    a10×b01  + a11×b11  + a12×b21 

 

 

 

C =    1 × 1 + 2 × 3 + 3 × 5  1 × 2 + 2 × 4   + 3× 6 

  

 4 × 1 + 5 × 3 + 6 × 5  4 × 2 + 5 × 4 + 6 × 6 

 

           

 C =   22 28 

  49 64 

 

Now the algorithm for matrix multiplication is  

 
Mathematical analysis 

 Step 1: The input’s size of above algorithm is simply order of matrices i.e n. 

 Step 2: The basic operation is in the innermost loop and which is   

              
There are two arithmetical operations in the innermost loop here 

1. Multiplication  

2. Addition 

Step 3:  The basic operation depends only upon input size. There are no best   case, worst 

case and average case efficiencies. Hence now we will go   for computing sum. There is just 

one multiplication which is repeated    no   each execution of innermost loop.  ( a for loop 

using variable k ).      Hence we will compute the efficiency for innermost loops. 

 

Step 4: The sum can be denoted by M (n). 

M(n) = outermost  × inner loop × innermost loop ( 1 execution ) 

 

 =[for loop using i]×[for loop using j]×[for loop using k]×                                                                                          

(1 execution) 

                                             

                                                         

                                                 
                                            M(n)= n3 
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Thus the simplified sum is n3. Thus the time complexity of matrix 

multiplication  Θ (n3) 

Running time of the Algorithm T(n) 

The estimation of running time of the algorithm on a particular machine is calculated by 

using the product. 

T (n) ≈ cmM(n) = cmn3  

Where- cm is the time of one multiplication on the machine in question.  

We would get a more accurate estimate if we took into account the time spent on the 

additions, too: 

T (n) ≈ cmM(n) + caA(n) = cmn3 + can
3 = (cm + ca)n

3 

T (n) ≈ cmM(n) = cmn3 

where cm is the time of one multiplication on the machine in question. We would get a more 

accurate estimate if we took into account the time spent on the additions, too: 

Time spend addition CA (n) 

The time speed to perform the addition operation is given by 

T(n) = caA(n)= ca n
3 

Where 

ca is the time taken to perform the one addition. 

Hence the running time of the algorithm is given by  

T (n) ≈ cmM(n) + caA(n) = cmn3 + can
3 = (cm + ca)n

3 

The estimation differs only by the multiplication constants and not by the order of growth. 

 

EXAMPLE 4:The following algorithm finds the number of binary digits in  

                       the binary representation of a positive decimal integer. 

 
Mathematical analysis 

Step 1: The input size is n i.e . The positive integer whose binary digit in binary  

   representation needs to be checked. 

Step 2 : The basic operation is denoted by while loop. And it is each time checking  whether   

              n > 1. The while loop will be executed for the number of time at   which n>1 is true .  

               it will be executed once more when n>1 is false . but when n>1 is false the   

              statements inside while loop wont get executed. 

Step 3: The value of n is halved on each repetition of the loop. Hence efficiency 

            algorithm is equal to log2 n 

Step 4: hence total number of times the while loop gets executed is    [log2 n] + 1 

Hence time complexity for counting number of bits of given number is Θ(log2 n). this  

            indicates floor value of log 2 n 

 

6. Explain the Mathematical analysis for recursive algorithm. (Apr/May-2017) or 

   Discuss the steps in Mathematical analysis for recursive algorithms. Do the same for finding 

factorial of a number. Nov/Dec 2017 or solve the following recurrence equations using iterative 

method or tree  Nov/Dec 2019 
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Discuss various methods used for mathematical analysis of recursive algorithms.May/June 

2018 
General plan for analyzing efficiency of recursive algorithms 

1. Decide the input size based on parameter n . 

2. Identify algorithms basic operations 

3. Check how many times the basic operation is executed.  

To find whether the execution of basic operation depends upon the input size n. 

determine worst, average , and best case for input of size n. if the basic 

operation depends upon worst case average case and best case then that has to be 

analyzed separately. 

4. Set up the recurrence relation with some initial condition and expressing the 

basic operation. 

5. Solve the recurrence or at least determine the order of growth. While solving the 

recurrence we will use the forward and backward substitution method. And 

then correctness of formula can be proved with the help of mathematical 

induction method. 

 

Example 1:Computing factorial of some number n. 
To compare the factorial F(n)=n! for an arbitrary non negative integer 

N! =1.2.3……(n-1).n 

= (n-1)!.n ,for n>1 

      0! =1 

By definition F(n)=F(n-1)!.n 

 

 
 

Mathematical Analysis: 

Step 1: The algorithm’s input size is n.  

Step 2: The algorithm’s basic operation in computing factorial is multiplication . 

Step 3 : The recursive function call can be formulated as  

   According to the formula, F(n) is computed as 

      F(n) = F(n-1) * n,      for n>0 

   And the number of execution is denoted by M(n).  

   The number of multiplication M(n) is computed as 

M(n) = M(n-1)      +       1,    for n>0 

 

 

 

 

M(n-1) multiplication are spent to compute F(n-1). 

One more multiplication is needed to multiply the result by n. 

Step 4: in step 3 the recurrence relation is obtained.  

The equation is 

M(n)=M(n-1) +1, for n>0 

 

To compute 

F(n-1) 

To multiply 

F(n-1) by n 
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Defines M(n)not explicitly(i.e.)as a function  of n, but implicitly as function of its 

value at another point, namely n-1. These equations are called as recurrence 

relations or recurrences. 

o Recurrences relations play an important role in the analysis of algorithm and 

some area of applied mathematics. 

o To solve a recurrence relation M(n)=M(n-1)+1 the formula for the sequence 

M(n) in terms of n only should be find. 

o To determine the unique solution, an initial condition is needed that tells the 

value with which the sequence starts. 

o The initial value is obtained from the condition if n=0 return 1 that makes the 

algorithm stops. 

The condition, if n=0 return 1 tells 2 things 

1. The recursive call stops when n=0 the smallest value for which the  

    algorithm is executed. Hence M(n)=0. 

2. When n=0 the algorithm performs no multiplication 

 
Forward Substitution: 

M(1) = M(0) +1 

M(2) = M(1) + 1 = 1 + 1 =2 

M(3) = M(2) + 1 = 2 + 1=3 

The recurrence relation and the initial condition for the algorithm number of 

multiplication M(n) is 

M(n)=M(n-1)+1,for n<0, M(0)=0 

Backward substitution: 

M(n) = M(n-1) + 1 

Substitute M(n-1) = M(n-2) + 1 

Now M(n) becomes  

                    M(n) = [M(n-2)+1]+1 

       = M(n-2) + 2 

Substitute M(n-2) =M(n-3)+1 

Now M(n) becomes  

M(n)=[M(n-3)+1] + 2 

        = M(n-3) + 3 

From the  substitution method we can establish a general formula as :  

M(n)= M(n-i) + i; 

Since n=0, substitute i=n; 

Now let us prove correctness of this formula using mathematical induction as follows 

Proof 

M(n) = n     by using mathematical induction 

Basis  :  let n = 0  then 
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     M(n) =0 

i.e M(0) = 0=n 

Induction: if we assume M(n – 1) = n-1 then 

       M(n) = M( n-1) + 1 

    = n-1  + 1 

    = n 

i.e    M(n) = n   Thus the time complexity of factorial function is Θ (n) 

 
 

 

 

 

 

Give the general plan for Analyzing the time efficiency of Recursive Algorithms and use 

recurrence to find number of moves for Towers of Hanoi problem. May/June 2018 

Example 2:Tower of Hanoi puzzle 

 
✓ In this puzzle, there are n disks of different sizes, and three pegs. 

✓ Initially all the disks are on the first peg in order if size, the largest on the bottom and 

the smallest on the top. 

✓ The goal is to move all the disks from peg 1 to peg 3 using peg 2 as auxiliary. 

✓ One disk should be moved at a time and do not place a larger disk on top of a smaller 

one. 

✓ The following steps are used to move n>1 disks from peg 1 to peg 3, peg 2 as 

auxiliary. 

1. Move n-1 disks recursively from peg 1 to peg 3.( peg 2 as auxiliary). 

2. Move the largest disk directly from peg 1 to peg 3. 

3.  Move n-1 disks recursively from peg 2 to peg 3.( peg 2 as  

     auxiliary). 

For example, if n=1 then the single disks is moved from source peg to destination peg 

directly.       

A        B          C   

                   
 

                             
General plan to tower of Hanoi problem 

The input size is the number of disks “n”. 

The algorithm basic operation is moving one disks at a time. 

The number of moves M(n) depends only on n. 

The recurrence equation is, 
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M(n)=M(n-1)+1+M(n-1),for n>1; 

M(n)=2M(n-1)+1, for n>1; 

The initial condition M(1)=1 

Now the recurrence relation for number of moves is, 

M(n)=2M(n-1)+1,for n>1 

M(1)=1 

The recurrence relation is solved by using backward substitution method 

Backward substitution Method  

M(n)=2M(n-1)+1 

Substitute 

M(n-1)=2M(n-2)+1 

M(n)=2[2M(n-2)+1]+1 

M(n)=22M(n-2)+2+1 

Substitute 

M(n-2)=2M(n-3)+1 

Now, M(n) becomes  

M(n)=22[2M(n-3)+1]+2+1 

M(n)=23[M(n-3)+22+2+1 

Hence after  I substitution M(n) becomes 

M(n)=2iM(n-i)+2i-1+2i-2+2i-3+…….2+1 

         =2iM(n-i)+2i-1 

Therefore te general formula is   2iM(n-i)+2i-1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 

1 3 
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Fig. recursive solution to the Tower of Hanoi puzzle 

Solution to recurrence relation is  

Since the initial condition is n=1 becomes i=n-1. 

The recurrence relation is 

M(n)=2iM(n-i)+2i-1      ..................(1) 

Substitute   I=n-1 in (1) 

M(n)=2n-1M(n-(n-1)+2n-1-1 

 =2n-1M(1)+2n-1-1 

  =2n-1+2n-1-1 

 =2n-1 

M(n)= 2n-1   Thus this is an exponential algorithm, It runs unimaginably long time for 

moderate values of n. 

 

Example 3 :To find the number of binary digits in binary representation 

Algorithm BinRec(n) 

//Input: A positive decimal integer n 

//Output: The number of binary   digits in n’s binary representation 

if n=1 

     return 1 

         else  

     return BinRec([n/2])+1 

Recurrence and Initial Condition  

A Recurrence for the number of addition A(n) made by the algorithm is the number of 

addition made in computing BinRec([n/2]) is A([n/2]) plus one more addition is made  

Thus recurrence is  

A(n)=A([n/2])+1,for >n 

A(n)->number of addition made by the algorithm 

A([n/2])->number of addition made to compute A9[n/2]) 

The recursive call end when n is equal to 1 and no addition is made. 

The initial condition is  A(1) = 0 

To solve the recurrence, backward substitutions cannot be used.The reason is the presence on 

[n/2] in the functions argument and the value of n is not power of 2. 

A theorem called Smoothness rule is used to solve the recurrence. 

The standard approach for solving such recurrence is to solve it only for n = 2k . 
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The order of growth observed for n = 2k gives a correct answer about the order of growth of 

all values of n. 

n = 2k takes the form 

A(2k) = A(2k−1) + 1 for k > 0, 

A(20) = 0. 

Now, backward substitutions can be applied. 

Backward Substitution Method 

A(2k) = A(2k−1) + 1  

substitute  A(2k−1) = A(2k−2) + 1 

= [A(2k−2) + 1] + 1  

= A(2k−2) + 2 

 substitute  A(2k−2) = A(2k−3) + 1 

= [A(2k−3) + 1] + 2  

= A(2k−3) + 3 ... ... 

After i iteration 

A(2k)   = A(2k−i) + i  

= A(2k−k) + k 

= A(20) + k 

= A(1) + k 

Thus, we end up with 

A(2k) = A(1) + k = k 

After returning to the original variable  

n = 2k and hence k = log2 n, 

A(n) = log2 n ∈ Ө(log n) 

 

Example 4: Fibonacci series 

A sequence of Fibonacci numbers is 0,1,1,2,3,5,8,13,21,34……….. 

The Fibonacci sequence can be defined by the simple recurrence  

F(n)=F(n-1)+F(n-2),for n>1…………………1 

The two initial conditions are 

F(0)=0 

F(1)=1 

Explicit formula for the nth Fibonacci number 

Backward substitution method is not used to solve the recurrence F(n)=F(n-1)+F(n-2),for 

n>1,because which fails to produce easily discernible pattern. 
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So, the theorem that describes solution to a homogeneous second order linear recurrence with 

constant coefficient is used to solve the problem. 

The homogenous with constant coefficient is  

ax(n)+bx(n-1)+cx(n-2)=0 ……………(2) 

Where, 

a,b,c are fixed real numbers called the coefficients of recurrence and a≠0 

x(n) is the unknown sequence to be found 

The characteristics equation of the recurrence equation is 

Ar2+br+c=0 ………………….(3) 

The recurrence relation can be written as 

F(n)-F(n-1)-F(n-2)=0 ………….(4) 

The characteristics equation for (4) 

r2-r-1=0 

The roots are 

R1,2=  

R1,2=  

R1=  

R2=  

The characteristics equation has two distinct real roots. 

Now the recurrence relation is 

X(n)=αr1
n+βr2

n   ……..(5) 

Substitute r1 and r2 in (5), 

F(n)= α( )n+β( )n  ……….(6) 

Now substitute the value of f(0) and F(1) in equation(6) 

F(0) = α( )0+β( )0 =0 ……….(7) 

F(1)= α( )1+β( )1 =0 ……….(8) 

By solving equation (7) and (8),the linear equation in two unknown α and β 

α+ β=0 

α( )+β( )=0 ……….(11) 
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(11)-(10) gives 

( ) β-( ) β=-1 

 +  β-   +   β = -1 

 β = -1 

 β = -  

Substitute β = -   in (9) 

α + β = 0 

α -   = 0 

α =     β = -  

Substitute the value of α and β in equation (6) 

F(n) =  n -   n 

F(n) =  

Where 

Φ =  

Φ = 1.61803 

Φ^ =-  

Φ^ = - 0.61803 

The constant Φ is known as, Golden Ratio. 

The value of Φ^ is lies between -1 and 0. 

When n goes to infinity, Φ^ gets infinitely small value. So, it can be omitted. 

Therefore F(n) =  Φ n  

So, for every non negative n, F(n) =  Φ n  is rounded to the nearest integer. 

  Algorithm for computing Fibonacci numbers 

First method 

 Algorithm F(n) 

 //Computes the nth Fibonacci number recursively by using its definition. 

 //Input: A nonnegative integer n 

 //Output: The nth Fibonacci number 

 if n<1 

  return n 
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 Else 

  return F(n-1)+(n-2) 

the algorithm’s basic operation is addition. 

Let A(n) is the number of additions performed by the algorithm to compute F(n). 

The number of additions needed to compute F(n-1) is A(n-1) and the number of additions 

needed to compute F(n-2) is A(n-2). 

The algorithm needs one more addition to compute the sum of A(n-1) and A(n-2). 

Thus the recurrence for A(n) is 

  A(n)=A(n-1) + A(n-2)+1, for n>1 

   A(0)=0 

   A(1)=0 

The recurrence A(n)-A(n-1)-A(n-2)=1 is same as F(n)-F(n-1)-F(n-2)=0, but its right hand 

side not equal to zero.  These recurrences are called inhomogeneous recurrences. 

General techniques are used to solve inhomogeneous recurrences. 

The inhomogeneous recurrences is converted into homogeneous recurrence by rewriting the 

in homogeneous recurrence as,A(n)+1]-[A(n-1)+1]-[A(n-2)+1]=0 (14) 

Now substitute, B(n)=A(n)+1 

Now (14) becomes, B(n)-B(n-1)-B(n-2)=0 

   B(0)=0 

   B(1)=1 

Here  B(n)=F(n+1) 

Since   B(n)=A(n)+1 

B(n-1)=A(n) 

So A(n)=B(n)-1 

Substitute F(n+1)-1 …………(15) 

We know that 

F(n)=  

F(n+1)=  ………(16) 

Substitute (16) in (15) 

A(n)= -1 

Hence  

A(n)€  

The poor efficiency class of algorithm could be anticipated from the class of recurrence 
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The reason behind the algorithm inefficiency can be traced by looking at the tree of recursive 

calls n=6 

The same values of the function are evaluated again and again which is extremely 

inefficiently. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig Tree of recursive calls for computing the Fibonacci number for n = 6 

 

7. Find the time complexity and space complexity of the following   problems. Factorial using  

     recursion and compute the nth Fibonacci    number using iterative statements.   Dec 2012 

 

8.Solve the following recurrence relations: or  solve the following recurrence equation: 

T(n)=T(n/2)+1,where n=2k for all k>=0 

T(n)=  T(n/3)+ T(2n/3)+cn,where  ‘c’ is a constant and ‘n’ is the input size. 

  Dec 2012 April/May 2019 

 1. T(n)=   2T(n/2)+3  n>2 

         2              n=2 

 

T(n)=2T(n/2)+3   

      =2{(2T(n/2)+3)/2}+3 

      =2{(2T(n/4)+3/2}+3  

   .... 

      =4T(n/4)+6   

       = 4{(2T(n/2)+3)/4}+6 

   ..... 

       =8T(n/8)+9   

  

F(6) 

F(4) 

F(0) 

 

F(5) 

F(1) 

F(1) F(1) F(0) 

F(2) 

F(0) 
F(1) 

F(4) 

F2) 
F(3) 

F(2) 

F(0) 
F(1) 

F(3) 

F(1) 
F(2) 

F(3) 

F(1) 
F(2) 
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     ---- 

 =2kT(n/2k)+3n 

 T(n)=nlogn+3n 

   Time complexity=o(nlog n) 

 

2. T(n)=      2T(n/2)+cn n>1 

                     a                  n=1  where a and c constants 

 

T(n)=2T(n/2)+cn   

      =2{(2T(n/2)+cn)/2}+cn 

      =2{(2T(n/4)+cn/2}+cn 

      ---- 

      =4T(n/4)+cn+cn 

      = 4{(2T(n/8)+cn/4}+ cn+cn 

               ------ 

       =8T(n/8)+ cn+cn+cn 

    --- 

    =2kT(n/2k)+k(cn) 

 T(n)=nlogn+ k(cn) 

    Time complexity=o(nlog n) 

    

8. Show the following equalities are correct June 2013 

 i. 5n2-6n = Φ(n2) 

 ii. n!=O(nn) 

 iii. n3+106n2=Θ(n3) 

 iv. 2n22n + n log n = Θ(n22n) 

 i. 5n2-6n = Φ(n2) =>higest order of grouth is n2 

 ii. n!=O(nn) =>higest order of grouth O(n)  

 iii. n3+106n2=Θ(n3) =>higest order of grouth O(n3)  

 iv. 2n22n + n log n = Θ(n22n)=>higest order of grouth O(n2)  

  Nov 2010    

9. Prove that for any two functions f(n) and g(n), we have f(n)-> Θ(g(n))  if and only if  

    f(n) -> O(g(n)) and  f(n) ->Ω(g(n))     Nov 2010 

Given function:  

f(n) and g(n) 

f(n)= O(g(n)) when f(n) ≤C1g(n)  for all n≥n0---------(1) 

f(n)= Ω(g(n)) when f(n) ≥C2g(n)  for all n≥n0---------(2) 

from (1) and (2) 

C2 g(n) ≤f(n) ≤ C1g(n)  for all  n≥n0 -------(3) 

(i.e) Θ(g(n)) = O(g(n))Ω(g(n)) 

From (3) f(n) = Θ(g(n)) hence proved 

 

10.  (a)If you have to solve the searching problem for a list of n numbers, how can you take  
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       advantage of the fact that the list is known to be sorted? Give separate answers for lists  

        represented as arrays  lists represented as linked lists. (AU april/may 2015) 

For a sorted array do a binary search to divide the array in half for each query, thus O(lg n). 

If the list is linked you must you do a linear search which is O(n), 

unless you use a linked binary search tree, which is O(lg n) 
 
 
 

11. The best-case analysis is not as important as the worst-case analysis of an algorithm”. 
Yes or No ? Justify your answer with the help of an example. (April/May 2021) 

The Best Case analysis is bogus. Guaranteeing a lower bound on an algorithm doesn't 
provide any information as in the worst case, an algorithm may take years to run. For 
some algorithms, all the cases are asymptotically the same, i.e., there are no worst and best 
cases. For example, Merge Sort. 

 

11.Derive the worst case analysis of merge sort using suitable illustration (AU april/may 2015) 

Efficiency of Merge Sort 

• In merge sort algorithm the two recursive calls are made. Each recursive call focuses 

on n/2 elements of the list .  

• After two recursive calls one call is made to combine two sublist i.e to merge all n 

elements.  

• Hence we can write recurrence relation as  

T(n) =  T(n/2) + T(n/2) + cn 

           T(n/2) = Time taken by left sublist 

           T(n/2) = time taken by right  sublist         

T(n) = time taken for combining two sublists 

        where n> 1 T (1) = 0 

The time complexity of merge sort can be calculated using two methods 

▪ Master theorem 

▪ Substitution method   

Master theoremLet , the recurrence relation for merge sort is  

T(n) =  T(n/2)   +    T(n/2)  +    cn 

Let T(n) =  aT(n/b)  +    f(n)   be a recurrence relation 

i.e.  T(n) =  2T(n/2)  +    cn   -------  ( 1 ) 

T(1) =  0 ----------- (2 ) 

As per master theorem T(n) = Θ (n d long n )  if a = b   

As equation  ( 1),a =2 , b = 2 and f(n) = cn and a = bd       i.e 2 = 2`  

This case gives us , T (n) =Θ (n log2 n) 

Hence the average and worst case time complexity of merge sort is  

C worst (n) = (n log2 n) 

Substitution method  Let, the recurrence relation for merge sort be 

T(n) =  T(n/2)   +    T(n/2)  +    cn for n>1 

i.e.  T(n) =  2T(n/2)  +    cn        for n>1            ------- (3) 
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   T(1) =  0         -------(4) 

Let us apply substitution on equation ( 3) . 

Assume     n=2k 

T(n) =  2T(n/2)  +    cn      

T(n) =  2T(2k/2 ) +    c.2k 

T(2k) =  2T(2k-1) +    c.2k       

If k = k-1 then,  

T(2k) =  2T(2k-1) +    c.2k       

T(2k) =  2[2T(2k-2) + c.2k -1] + c.2k       

T(2k) = 22 T(2k-2) + 2.c.2k -1  + c .2k       

T(2k) = 22 T(2k-2) + 2.c.2k /2   + c.2k       

T(2k) = 22 T(2k-2) + c.2k   +    c.2k       

T(2k) = 22 T(2k-2) + 2c .2k   

Similarly we can write, 

T(2k) = 23 T(2k-3) + 3c .2k   

T(2k) = 24 T(2k-4) + 4c .2k   

….. 

…. 

T(2k) = 2k T(2k-k) + k.c.2k   

T(2k) = 2k T(20) + k.c.2k   

T(2k) = 2k T(1) + k.c.2k  -------- (5) 

But as per equation (4), T(1) =0 

There equation (5) becomes ,  

T(2k) = 2k .0 +. k. c . 2k   

T(2k) = k. c . 2k   

But we assumed n=2k , taking logarithm on both sides.i.e. log 2 n = k 

Therefore     T(n) = log 2 n. cn 

Therefore   T (n) =Θ (n log2 n) 

Hence the average and worst case time complexity of merge sort is  

   C worst (n) = (n log2 n) 

Time complexity of merge sort 

  Best case Average case Worst case 

Θ (n log2 n) Θ (n log2 n) Θ (n log2 n) 

 

12.write Insertion sort algorithm and estimate its running time. 
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✓ Like selection sort, insertion sort loops over the indices of the array. It just calls insert on 

the elements at indices 1,2,3,…,n−1. Just as each call to indexOfMinimum took an amount 

of time that depended on the size of the sorted subarray, so does each call to insert. 

Actually, the word "does" in the previous sentence should be "can," and we'll see why. 

✓ Let's take a situation where we call insert and the value being inserted into a subarray is 

less than every element in the subarray.  

✓ For example, if we're inserting 0 into the subarray [2, 3, 5, 7, 11], then every element in the 

subarray has to slide over one position to the right. So, in general, if we're inserting into a 

subarray with k elements, all k might have to slide over by one position. 

✓  Rather than counting exactly how many lines of code we need to test an element against a 

key and slide the element, let's agree that it's a constant number of lines; let's call that 

constant ccc. Therefore, it could take up to c⋅k lines to insert into a subarray of k elements. 

✓ Suppose that upon every call to insert, the value being inserted is less than every element in 

the subarray to its left. When we call insert the first time, k=1. The second time, k=2. The 

third time, k=3. And so on, up through the last time, when k=n−1.  

Therefore, the total time spent inserting into sorted subarrays 

isc⋅1+c⋅2+c⋅3+⋯c⋅(n−1)=c⋅(1+2+3+⋯+(n−1))  

That sum is an arithmetic series, except that it goes up to n−1n-1n−1 rather than nnn. Using 

our formula for arithmetic series, we get that the total time spent inserting into sorted 

subarrays is 

c⋅(n−1+1)((n−1)/2)=cn2/2−cn/2. 

Using big-Θ notation, we discard the low-order term cn/2 and the constant factors c and 1/2, 

getting the result that the running time of insertion sort, in this case, is Θ(n2). 

Can insertion sort take less than Θ(n2) time? The answer is yes. Suppose we have the array 

[2, 3, 5, 7, 11], where the sorted subarray is the first four elements, and we're inserting the 

value 11. Upon the first test, we find that 11 is greater than 7, and so no elements in the 

subarray need to slide over to the right.  

✓ Then this call of insert takes just constant time. Suppose that every call of insert 

takes constant time. Because there are n−1 calls to insert, if each call takes time that 

is some constant ccc, then the total time for insertion sort is c⋅(n−1) which is Θ(n), 

not Θ(n2). 

✓ Can either of these situations occur? Can each call to insert cause every element in 

the subarray to slide one position to the right? Can each call to insert cause no 

elements to slide? The answer is yes to both questions.  

✓ A call to insert causes every element to slide over if the key being inserted is less 

than every element to its left. So, if every element is less than every element to its 

left, the running time of insertion sort is Θ(n2).  

✓ What would it mean for every element to be less than the element to its left? The 

array would have to start out in reverse sorted order, such as [11, 7, 5, 3, 2]. So a 

reverse-sorted array is the worst case for insertion sort. 

✓ How about the opposite case? A call to insert causes no elements to slide over if the 

key being inserted is greater than or equal to every element to its left. So, if every 

element is greater than or equal to every element to its left, the running time of 

insertion sort is Θ(n). 

✓  This situation occurs if the array starts out already sorted, and so an already-sorted 

array is the best case for insertion sort. 
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What else can we say about the running time of insertion sort? Suppose that the array starts 

out in a random order. Then, on average, we'd expect that each element is less than half the 

elements to its left.  

✓ In this case, on average, a call to insert on a subarray of k elements would slide k/2 

of them. The running time would be half of the worst-case running time. But in 

asymptotic notation, where constant coefficients don't matter, the running time in the 

average case would still be Θ(n2), just like the worst case. 

✓ What if you knew that the array was "almost sorted": every element starts out at most 

some constant number of positions, say 17, from where it's supposed to be when 

sorted?  

✓ Then each call to insert slides at most 17 elements, and the time for one call of 

insert on a subarray of kkk elements would be at most 17⋅c. Over all n−1 calls to 

insert, the running time would be 17⋅c⋅(n−1), which is Θ(n), just like the best case. 

So insertion sort is fast when given an almost-sorted array. 

To sum up the running times for insertion sort: 

• Worst case: Θ(n2). 

• Best case: Θ(n). 

• Average case for a random array: Θ(n2). 

• "Almost sorted" case: Θ(n). 

 f you had to make a blanket statement that applies to all cases of insertion sort, you would 

have to say that it runs in O(n2) time. You cannot say that it runs in Θ(n2) time in all cases, 

since the best case runs in Θ(n) time. And you cannot say that it runs in Θ(n) time in all 

cases, since the worst-case running time is Θ(n2). 

13.Show how to implement a stack using two queues.Analyze the running time of the stack       

operations.
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14. find the closest asymptotic tight bound by solving the recurrence equation  

 T(n)=8T(n/2)+n2 with (T(1)=1) using recursion tree method.[Assume that T(1)ЄӨ(1)] 
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15.Derive a loose bound on the following equation: F(x)=35 x8 -22x7+14x5 -2x4 -4x2+x-15 
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16.Solve the recurrence relations  

X(n) =x( n-1) +5 for n > 1 x(1)=0 

 

X(n) =3x( n-1)    for n > 1 x(1)=4 

 

X(n) =x( n-1) +n for n > 0 x(0)=0 

 

X(n) =x( n/2) +n  for n > 1 x(1)=1 (solve for n= 2 k) 

 

                         X(n) =x( n/3) +1  for n > 1 x(1)=1 (solve for n= 3 k)   

 

 X(n) =x( n-1) +5 for n > 1 x(1)=0 

 

X(1)=0 

If n=2 

X(2)=x(2-1)+5 

       =x(1)+5 

       =0+5 

     =5 

If n=3 

X(3)=x(3-1)+5 
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       =x(2)+5 

       =5+5 

     =10 

 

If n=4 

X(4)=x(4-1)+5 

       =x(3)+5 

       =10+5 

     =15........ 

 

17.Use the most appropriate notation to indicate the time efficiency  class of sequential search  

            algorithm in the worst case,best case and the average case. 

 

 

Solution : Sequential search  

 “Given a target value and a random list of values, find the location of the target in the 

list, if it occurs, by checking each value in the list in turn” 

get (NameList, PhoneList, Name) 

i = 1 

N = length(NameList) 

Found = FALSE 

while ( (not Found) and (i <= N) ) { 

    if ( Name == NameList[i] ) { 

        print (Name, “’s phone number is ”, PhoneList[i]) 

        Found = TRUE 

    } 

    i = i+1 

} 

if ( not Found ) { print (Name, “’s phone number not found!”) } 

Central unit of work: operations that occur most frequently 

Central unit of work in sequential search:  

Comparison of target Name to each name in the list 

Also add 1 to i 

Typical iteration: two steps (one comparison, one addition) 

Given a large input list: 

Best case: smallest amount of work algorithm must do 

Worst case: greatest amount of work algorithm must do 

Average case: depends on likelihood of different scenarios occurring 

◼ Best case: target found with the first comparison (1 iteration) 

◼ Worst case: target never found or last value (N iterations) 

◼ Average case: if each value is equally likely to be searched, work done varies from 1 

to N, on average N/2 iterations  

Sequential search worst case (N) grows linearly in the size of the problem 2N steps (one 

comparison and one addition per loop) Also some initialization steps... 

On the last iteration, we may print something...After the loop, we test and maybe print... 

To simplify analysis, disregard the “negligible” steps (which don’t happen as 

often), and ignore the coefficient in 2N Just pay attention to the dominant term (N)  

Order of magnitude O(N): the class of all linear functions (any algorithm that takes C1N + 

C2 steps for any constants C1 and C2) 
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18.(i) Prove that if g(n) is Ω(f(n)) then f(n) is O(g(n)).May/June 2018 

f(n) ∈ Ω(g(n)) ⟺ g(n) ∈ O(f(n)) 

 Proof: 

  O(f(n))={g:N→N  |  ∃c,n0∈N  ∀n≥n0:g(n)≤c⋅f(n)} 

  Ω(g(n))={f:N→N  |  ∃c,n0∈N  ∀n≥n0:f(n)≥c⋅g(n)} 

  Step 1/2: f(n) ∈ Ω(g(n)) ⟺ g(n) ∈ O(f(n)) 

  ∃c,n0∈N ∀n≥n0: f(n)≥c⋅g(n)⇒f(n)g(n)≥c⇒1g(n)≥cf(n)⇒g(n)≤1c⋅f(n) 

   And this is exactly the definition of O(f(n)). 

  Step 2/2: f(n)∈Ω(g(n))⇐g(n)∈O(f(n)) 

  ∃c,n0∈N ∀n≥n0: g(n)≤c⋅f(n)⇒...⇒f(n)≥1c⋅g(n) 

  Hence proved. 

 

19. Explain briefly about Empirical Analysis of Algorithm.  

 

The principal alternative to the mathematical analysis of an algorithm’s efficiency is its 

empirical analysis. This approach implies steps spelled out in the following plan. 

 

General Plan for the Empirical Analysis of Algorithm Time Efficiency 

1. Understand the experiment’s purpose. 

2. Decide on the efficiency metric M  to be measured and the measurement unit(an operation 

count vs. a time unit). 

3. Decide on characteristics of the input sample (its range, size, and so on). 

4. P r e p a r e  a  p r o g r a m  i m p l e m en t i n g  t h e  a l g o r i t h m  f o r  t h e  

e x p e r imentation.  

5. Generate a sample of inputs. 

6. Run the algorithm (or algorithms) on the sample’s inputs and record the data observed. 

7. Analyze the data obtained. 

 

 

 

 

1. Purpose: 

• To ensure theoretical assertion about the algorithm’s efficiency 

• comparing the efficiency of several algorithms for solving the same problem or different 

implementations of the same algorithm 

• developing a hypothesis about the algorithm’s efficiency class 

• ascertaining the efficiency of the program implementing the algorithm on a particular 

machine.  

2. how  & What to measure 
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• Include a variable counter, to count the number of times the 

algorithm’s basic operation is executed.  

• In the implementing the algorithm , measure the running time of basic 

operation 

Example 

• In unix, the system command time may be used. 

• computing the difference between the two(t  finish−t  start ).  

 

Disadvantages of Measuring the system time 

1. System’s time is typically not very accurate, and you might get somewhat 

different results on repeated runs of the same program on the same 

inputs. An obvious remedy is to make several such measurements and then take 

their average (or the median) as the sample’s observation point.  

2. In the high speed of modern computers, the running time may fail to register 

at all and be reported as zero. The standard trick to overcome this 

obstacle is to run the program in an extra loop many times, measure the total 

running time, and then divide it by the number of the loop’s repetitions. 

3. The computer running under a time-sharing system such as UNIX, the reported time 

may include the time spent by the CPU on other programs, which obviously defeats the 

purpose of the experiment. Therefore, 

yous h o u l d t a k e c a r e t o a s k t h e s y s t e m f o r t h e t i m e d e v o t e d s p e c i fi

c a l l y t o e x e c u t i o n  o f  y o u r  p r o g r a m .  ( I n  U N I X ,  t h i s  t i m e  i s  

c a l l e d  t h e  “ u s e r  t i m e , ”  a n d  i t  i s  a u t o m a t i c a l l y  provided by the 

time command.) 

 

Advantage of Measuring physical running time 

(i) the physical running time provides very specific information about an 

algorithm’s performance in a particular computing environment  

(ii) Measuring time spent on different segments of a program can pinpo int a 

bottleneck in the program’s performance that can be missed by an abstract 

deliberation about the algorithm’s basic operation profiling.  

4. Deciding on a sample of inputs 

 

Sample size: (it is sensible to start with a relatively small sample and increase it later 

if necessary) 

Range of input sizes: (typically neither trivially small nor excessively large) 

 

• procedure for generating instances in the range chosen.  

• The instance sizes c an  e i t h e r  adh e r e  t o  s om e  p a t t e r n  ( e .g . ,  10 0 0,  

2 0 00 ,  3 00 0 ,  .  .  .  ,  10 , 00 0o r 5 00 ,  1 00 0 , 2000, 4000, . . . , 128,000) or 

be generated randomly within the range chosen. 

• Several instances of the same size should be included or not. 

5. Generate a sample of inputs (random numbers) 

 

Typically, its output will be a value of a (pseudo)random variable uniformly distributed in 

the interval between 0 and 1. If a different (pseudo)random variable is desired, 

an appropriate transformation needs to be made. For example, if  x is a continuous 

random variable uniformly distributed on the interval 0≤x < 1, the variable y =l+⌊x(r −l)⌋ 
w i l l  b e  u n i f o r m l y  d i s t r i b u t ed  a m o n g  t h e  i n t e g e r  v a l u e s  b e t w e en  

i n t e g e r s  l and r −1( l  <  r ) .  

Alternatively, you can implement one of several known algorithms for generating 

(pseudo)random numbers. The most widely used and thoroughly studied of such algorithms 

is the linear congruential method  
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ALGORITHM 

 Random(n, m, seed,  a ,  b )  

//Generates a sequence of  n  pseudorandom numbers according to the linear 

/ / c o n g r u e n t i a l  m e t h o d  

//Input: A positive integer n and positive integer parameters m, seed,  a ,  b  

//Output: A sequence r1,  . . . , rn of n pseudorandom integers uniformly 

/ /  d i s t r i b u t e d  a m o n g  i n t e g e r  v a l u e s  b e t w e e n  0  a n d  m−1 

//Note: Pseudorandom numbers between 0 and 1 can be obtained 

/ /  b y  t r e a t i n g  t h e  i n t e g e r s  g en e r a t e d  a s  d i g i t s  a f t e r  t h e  d e c i m a l  p o i n t  

r0← seed 

for i ←1 to n do 

ri ←(a ∗ri−1+b) mod m 

 

6. Data analysis 

• It is a good idea to use both these options whenever it is feasible because both 

methods have their unique strengths and weaknesses. 

• The advantages of tabulated data lies in the opportunity to manipulate it easily 

and to find efficiency class of the algorithm. 

• The Scatter plot representation helps in the analysis of algorithm efficiency 

class as given in figure 

Shape of the scatter plot Efficiency class 

Concave shape  Logarithmic 

Point around straight line or between two 

straight line 

Linear 

Convex shape Quadratic and nlogn 

Convex shape with rapid increase in the 

metrics valus 

Cubic 
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Typical scatter plots. (a) Logarithmic. (b) Linear. (c) One of the convex 

functions 

Application: 

1. Predicting the algorithm performance on a sample size not included in the experiment 

sample. 

2. The standard techniques of statistical data analysis and prediction can also be done. 

 

20. Explain briefly about Algorithm Visualization. 

Algorithm visualization is defined as the use of images to convey some useful information 

about algorithms. That information can be a visual illustration with the following 

combinations. 
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1. Algorithm’s operation on different kinds of inputs 

2. Same input for different algorithms to compare the execution speed. 

An algorithm visualization uses graphic elements—points, line segments, two- or three-

dimensional bars, and so on—to represent some “interesting events” in the algorithm’s 

operation. 

There are two principal variations of algorithm visualization: 

1. Static algorithm visualization 

2. Dynamic algorithm visualization, also called algorithm animation 

Static algorithm visualization shows an algorithm’s progress through a series of still images. 

Algorithm animation, on the other hand, shows a continuous, movie-like presentation of an 

algorithm’s operations. Animation is an arguably more sophisticated option, which, of 

course, is much more difficult to implement. 

The features of an animations user interface was suggested by Peter Gloor is listed below 

• Be consistent 

• Be Interactive 

• Be clear and concise 

• Be forgiving to the user 

• Adapt to the knowledge level of the user 

• Emphasis the visual component 

• Keep the user interested 

• Incorporate both symbolic and iconic representations 

• Include algorithm analysis and comparisons with other algorithm for the same 

problem 

• Include execution history 

The success of Sorting Out Sorting made sorting algorithms a perennial favorite for 

algorithm animation. Indeed, the sorting problem lends itself quite naturally to visual 

presentation via vertical or horizontal bars or sticks of different heights or lengths, which 

need to be rearranged according to their sizes (Figure 2.8). This presentation is convenient, 

however, only for illustrating actions of a typical sorting algorithm on small inputs. For 

larger files, Sorting Out Sorting used the ingenious idea of presenting data by a scatterplot of 

points on a coordinate plane, with the first coordinate representing an item’s position in the 

file and the second one representing the item’s value; with such a representation, the process 

of sorting looks like a transformation of a “random” scatterplot of points into the points along 

a frame’s diagonal (Figure 2.9). In addition, most sorting algorithms work by comparing and 

exchanging two given items at a time—an event that can be animated relatively easily. 
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Applications: 

1. Education - Seeks to help students learning algorithms. 

2. Research - Helps to uncover some unknown features of algorithms. 

IMPORTANT QUESTIONS 
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Part A 

 

1. Show the notion of an algorithm.          Dec 2009 / May 2013 

2. What are six steps processes in algorithmic problem solving?   Dec 2009 
3. What is time and space complexity?   Dec 2012 

4. Define Algorithm validation.      Dec 2012 

5. Differentiate time complexity from space complexity.     May 2010 

6. What is a recurrence equation?        May 2010 

7. What do you mean by algorithm?    May 2013 

8. Define Big Oh Notation.   May 2013 

9. What is average case analysis?  May 2014 

10. Define program proving and program verification.   May 2014 

11. Define asymptotic notation.  May 2014 

12. What do you mean by recursive algorithm?   May 2014 

13. Establish the relation between O and Ω   Dec 2010 

14. If f(n) = amnm + ... + a1n + a0. Prove that f(n)=O(nm).Dec 2010 

15. Define the Fundamentals of Algorithmic Problem Solving  

16. Short notes on Important Problem Types  

17. .Define Fundamentals of the Analysis of Algorithm Efficiency  

18. Show the Analysis Framework  

19. Define Asymptotic Notations and its properties 

20. Define Mathematical analysis for Recursive and Non-recursive algorithms.  

 

Part B 

1. Explain the notion of algorithm. May 2014 

2. Explain the fundamentals of algorithm. May 2014    

3. Find the time complexity and space complexity of the following  problems. Factorial using  

    recursion and compute the nth Fibonacci number using iterative statements.   Dec 2012 

4.Solve the following recurrence relations:    Dec 2012 

 1. T(n)=   2T(n/2)+3  n>2 

         2                n=2 

 

 2. T(n)=  2T(n/2)+cn n>1 

        a               n=1   where a and c constants 

     

5. Distinguish between Big Oh, Theta and Omega notation.  Dec 2012    

6. Analyse the best case, average and worst case analysis for linear  search. Dec 2012   

7. Explain how time complexity is calculated. Give an example.    Apr 2010 

8. Elaborate on asymptotic notation with example.    Apr 2010    

9. Briefly explain the time complexity, space complexity estimation June 2013 

10. Write linear search algorithm and analyse its complexity. June 2013     

11. Show the following equalities are correct      June 2013 

 i. 5n2-6n = Φ(n2) 

 ii. n!=O(nn) 

 iii. n3+106n2=Θ(n3) 

 iv. 2n22n + n log n = Θ(n22n)    

12. What are the features of an efficient algorithm? June 2014 

13. What is space complexity? With an example explain the components  of   fixed and variable  

      part in space complexity. June 2014  

14. Explain towers of Hanoi problem and solve it using recursion. June 2014    

15. Derive the recurrence relation for Fibonacci series algorithm : also   carry out time 

       complexity analysis. June 2014     

16. Discuss in details about the efficiency of the algorithm with example. Mar 2014 
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  17.Explain the procedure to calculate the time complexity of binary search using non-recursive 

Algorithm. 

18. Explain briefly the time complexity and space complexity estimation. Nov 2010 

19. Write a linear search algorithm and analyse its best, worst and average case time complexity.  

20. Prove that for any two functions f(n) and g(n), we have f(n)->  Θ(g(n)) 

         if   and only if f(n) - > O(g(n)) and  f(n) ->Ω(g(n))     Nov 2010 

21.Explain the Mathematical analysis for non-recursive algorithm 

 

ANNA UNIVERSITY APRIL/MAY 2015 

 

PART-A 

1.write algorithm to find the number of binary digits in the binary  representation of a positive  

   decimal integer Part A – Refer Q. No. 56 
2.write down the properties of asymptotic notations. Part A – Refer Q. No. 57 

 

PART-B 

11.(a)if you have to solve the searching problem for a list of n numbers, how  can you take  

        advantage of the fact that the list is known to be sorted? Give separate answers for 

(i) List represented as arrays 

(ii) List represented as linked list Compare the time complexity involved in the analysis   

of both the algorithms  Refer  Q. No. 27 

     OR 

    (b)(i)Derive the worst case analysis of merge sort using suitable illustrationRefer Q.No. 28 

         (ii) Derive a loose bound on the following equation:  

F(x)=35 x8 -22x7+14x5 -2x4 -4x2+x-15 Q.No. 15 

  

ANNA UNIVERSITY NOV/DEC 2015 

 

PART-A 

1.The (log n)th smallest number of n unsorted numbers can be determined in O(n) average-case time     

  (True/False) Refer Q. No. 60 

2. Fibonacci algorithm and its recurrence relation Refer  Q. No. 61 

 

PART-B 

11.(a)(i)write Insertion sort algorithm and estimate its running time.(8) Refer  Q. No. 12 

         (ii)find the closest asymptotic tight bound by solving the recurrence equation  

 T(n)=8T(n/2)+n2 with (T(1)=1) using recursion tree method.[Assume that T(1)ЄӨ(1)] 

     Refer  Q. No. 14 

     OR 

    (b)(i)Suppose W satisfies the following recurrence equation and base case (where c is a  

            constant):W(n)=c.n+W(n/2) and W(1)=1.What is the asymptotic order of W(n).  

Refer  Q. No. 14 

        (ii)Show how to implement a stack using two queues. Analyze the running time of the stack  

Operations. Refer  Q. No. 13 

 

ANNA UNIVERSITY APRIL/MAY 2016 

 

PART-A 

1. Give the Euclid’s algorithm for computing gcd(m, n) Refer  Q. No. 58 

2. Compare the order of growth n(n-1)/2 and n2. Refer Q. No. 59 

 

PART-B 

1. a.( i) Give the definition and Graphical Representation of O-Notation.(8) Refer  Q. No. 4 
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       (ii) Give an algorithm to check whether all the Elements in a given array of n elements   

             are distinct. Find the worst case complexity of the same. (8) Refer Q. No.5(2) 

OR 

(b) Give the recursive algorithm which finds the number of binary digits in the binaryrepresentation 

of a positive decimal integer. Find the recurrence relation and complexity. (16) Refer Q. No.6(3) 

 

ANNA UNIVERSITY NOV/DEC 2016 

 

PART-A 

1.Design an algorithm to compute the area and circumference of a circle Refer  Q. No. 63 

2.Define recurrence relation. Refer Q. No. 45 

 

PART-B 

11.(a)(i)Use the most appropriate notation to indicate the time efficiency  class of sequential search  

            algorithm in the worst case,best case and the average case. Refer  Q. No. 17 

        (ii) State the general plan for analyzing the time efficiency of nonrecursive algorithm and  

            explain with an example(8) Refer  Q. No. 5 

(b) Solve the recurrence relations Refer Q. No. 16 

 X(n) =x( n-1) +5 for n > 1 x(1)=0 

X(n) =3x( n-1)    for n > 1 x(1)=4 

X(n) =x( n-1) +n for n > 0 x(0)=0 

X(n) =x( n/2) +n  for n > 1 x(1)=1 (solve for n= 2 k) 

X(n) =x( n/3) +1  for n > 1 x(1)=1 (solve for n= 3 k)  (16) 

 

ANNA UNIVERSITY APRIL/MAY 2017 
 

PART-A 

1. What is an algorithm? Refer  Q. No. 1 

2. Write an algorithm to compute the greatest common divisor of two numbers Refer  Q. No. 10 

 

PART-B 

1. Explain briefly Big oh notation , Omega notation and Theta notation give an example Q. No. 30 

2.Briefly explain the mathematical analysis of recursive and non recursive algorithmQ.No.35 & 40 

 

ANNA UNIVERSITY NOV/DEC 2017 
 

PART-A 

1. How to measure an algorithm’s running time ? Refer  Q. No. 21 

2. What do you mean by “worst case efficiency: of an algorithm. Refer  Q. No. 55 
 

PART-B 

1. Discuss the steps in Mathematical analysis for recursive algorithms. Do the same for finding 

    Factorial of a number Refer Q. No. 6 

2. What are the Rules of Manipulate Big-Oh Expression and about the typical growth rates of 

algorithms? Refer  Q.No.4 
 

ANNA UNIVERSITY MAY/JUNE 2018 
 

PART-A 

1. Give the Euclid’s algorithm for computing gcd of two numbers. Refer  Q. No. 58 

2. What is a basic operation? Refer  Q. No. 63 
 

PART-B 

1. a) Define Big O notation, Big Omega and Big Theta Notation. Depict the same graphically and 

explain. Refer  Q.No.4 
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b) Give the general plan for Analyzing the time efficiency of Recursive Algorithms and use 

recurrence to find number of moves for Towers of Hanoi problem. Refer Q.No.6 

ANNA UNIVERSITY NOV/DEC 2018 
 

PART-A 

1. Define algorithm. List the desirable properties of an algorithm. Refer  Q. No. 64 

2. Define best, worst, average case time complexity. Refer  Q. No. 65 
 

PART-B 

1. (i) Prove that if g(n) is Ω(f(n)) then f(n) is O(g(n)). Refer  Q.No.18 

(ii) Discuss various methods used for mathematical analysis of recursive algorithms.  

Refer Q.No.6 

2. Write the asymptotic notations used for best case, average case and worst case analysis of 

algorithms. Write an algorithm for finding maximum element in an array. Give best, worst and 

average case complexities. Refer  Q.No.4 

 

ANNA UNIVERSITY APRIL/MAY  2019 
 

PART-A 

1. How do you measure the efficiency of an algorithm? - Refer  Q.No.29 

2. Prove that the of f(n)=o(g(n)) and g(n)=o(f(n)),then f(n)=θ g(n). - Refer  Q.No.66 

 

PART-B 

1.a) (i) solve the following recurrence equation: - Refer  Q.No.8 

1.T(n)=T(n/2)+1,where n=2k for all k>=0 

2.T(n)=  T(n/3)+ T(2n/3)+cn,where  ‘c’ is a constant and ‘n’ is the input size. 

(ii) Explain the steps involved in problem solving. - Refer Q.No.8 

 

2.(i) write an algorithm for determining the uniqueness of an array. Determine the time 

complexity of your algorithm. - Refer Q.No.5 

(ii) Explain time-space trade off of the algorithm designed - Refer  Q.No.3 

 

ANNA UNIVERSITY NOV/DEC 2019 
 

PART-A 

1. State the transpose symmetry property of O and Ω - Refer Q.No.66 

2. Define recursion - Refer Q.No.67 

 

PART-B 

1. a) i) Solve the following recurrence equations using iterative method or tree Refer  Q.No.6  

ii) Elaborate asymptotic analysis of an algorithm with an example. Refer Q.No.4 

2. b) write an algorithm using recursion that determines the GCD of two numbers. Determine the 

time and space complexity - Refer Q.No.1.A 

 

ANNA UNIVERSITY NOV/DEC 2021 
 

PART-A 

1. Define algorithm with its properties. Refer  Q.No.1 

2. List the reasons for choosing an approximate algorithm. Refer  Q.No.68 

PART-B 

1. a) i) Consider the problem of counting, in a given text the number of substrings that start with 

an Aand end with a B. For example, there are four such substrings in CABAAXBYA. Design 

a brute-force algorithm for this problem and determine its efficiency class. Refer  Q.No.6 
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ii) “The best-case analysis is not as important as the worst-case analysis of an algorithm”. 

Yes or No ? Justify your answer with the help of an example. Refer  Q.No.11 

 

2. b) (i) Solve : T(n) = 2T(n/2) + n3. Refer  Q.No.11 

(iii) Explain the importance of asymptotic analysis for running time of an algorithm with an 

example. Refer  Q.No.4 

 

 

ANNA UNIVERSITY NOV/DEC 2021 
 

PART-A 

 

 

1. Define the notation big-Omega. Refer  Q.No.14 

2. What is meant time complexity of an algorithm? Refer  Q.No.7 

 

 

PART-A 
11. a) Outline worst case running time, best case running time and average case running time of 

an algorithm with an example? 

                b) Outline a recursive algorithm and non recursive algorithm with an example. 

          Refere Q.No.35 & 40 

 

 


